ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Computational Methods  (62)
  • Environmental Microbiology  (51)
  • Oxford University Press  (113)
  • American Institute of Physics
  • 1
    Publication Date: 2017-01-19
    Description: R-type bacteriocins are contractile phage tail-like structures that are bactericidal towards related bacterial species. The C-terminal region of the phage tail fiber protein determines target-binding specificity. The mutualistic bacteria Xenorhabdus nematophila and X. bovienii produce R-type bacteriocins (xenorhabdicins) that are selectively active against different Xenorhabdus species. We analyzed the P2-type remnant prophage clusters in draft sequences of nine strains of X. bovienii . The C-terminal tail fiber region in each of the respective strains was unique and consisted of mosaics of modular units. The region between the main tail fiber gene ( xbpH1 ) and the sheath gene ( xbpS1 ) contained a variable number of modules encoding tail fiber fragments. DNA inversion and module exchange between strains was involved in generating tail fiber diversity. Xenorhabdicin-enriched fractions from three different X. bovienii strains isolated from the same nematode species displayed distinct activities against each other. In one set of strains, the strain that produced highly active xenorhabdicin was able to eliminate a sensitive strain. In contrast, xenorhabdicin activity was not a determining factor in the competitive fitness of a second set of strains. These findings suggest that related strains of X. bovienii use xenorhabdicin and additional antagonistic molecules to compete against each other.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-19
    Description: Anabaena PCC7120 has two annotated toxin–antitoxin systems: MazEF and HicAB. Overexpression of either of the toxins severely inhibited the growth of Escherichia coli BL21(p lysS )(DE3). Of the two Anabaena toxins, MazF exhibited higher toxicity than HicA as evidenced by (i) 100-fold lower viability upon overexpression of MazF compared to HicA; (ii) complete loss of cell viability within 1 h of induction of MazF expression, as against 〉10 3 colony forming units mL –1 in case of HicA; (iii) inability to maintain the MazF overexpressing plasmid in E. coli cells; and (iv) neutralisation of the toxin was effective at the molar ratio of 1:1.9 for MazF:MazE and 13:1 for HicA:HicB, indicating higher antitoxin requirement for neutralisation of MazF. The growth inhibitory effect of MazF was found to be higher in lag phase cultures compared to mid-logarithmic phase cultures of E. coli , while the reverse was true for HicA. The results suggest possible distinct roles for MazEF and HicAB systems of Anabaena .
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-13
    Description: Animal-associated microbiotas form complex communities, which play crucial functions for their host, including susceptibility to infections. Despite increasing attention to bats as reservoirs of zoonotic pathogens, their microbiota is poorly documented, especially for samples potentially implicated in pathogen transmission such as urine and saliva. Here, using low-biomass individual samples, we examined the composition and structure of bacterial communities excreted by insectivorous bats, focusing on three body habitats (saliva, urine and faeces). We show that niche specialisation occurs as bacterial community composition was distinct across body habitats with the majority of phylotypes being body habitat specific. Our results suggest that urine harbours more diverse bacterial communities than saliva and faeces and reveal potentially zoonotic bacteria such as Leptospira , Rickettsia , Bartonella and Coxiella in all body habitats. Our study emphasised that, in addition to the traditional use of gut-associated samples such as faeces, both urine and saliva are also of interest because of their diverse microbiota and the potential transmission of pathogenic bacteria. Our results represent a critical baseline for future studies investigating the interactions between microbiota and infection dynamics in bats.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-10
    Description: RNA molecules are attractive therapeutic targets because non-coding RNA molecules have increasingly been found to play key regulatory roles in the cell. Comparing and classifying RNA 3D structures yields unique insights into RNA evolution and function. With the rapid increase in the number of atomic-resolution RNA structures, it is crucial to have effective tools to classify RNA structures and to investigate them for structural similarities at different resolutions. We previously developed the algorithm CLICK to superimpose a pair of protein 3D structures by clique matching and 3D least squares fitting. In this study, we extend and optimize the CLICK algorithm to superimpose pairs of RNA 3D structures and RNA–protein complexes, independent of the associated topologies. Benchmarking Rclick on four different datasets showed that it is either comparable to or better than other structural alignment methods in terms of the extent of structural overlaps. Rclick also recognizes conformational changes between RNA structures and produces complementary alignments to maximize the extent of detectable similarity. Applying Rclick to study Ribonuclease III protein correctly aligned the RNA binding sites of RNAse III with its substrate. Rclick can be further extended to identify ligand-binding pockets in RNA. A web server is developed at http://mspc.bii.a-star.edu.sg/minhn/rclick.html .
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-29
    Description: Many toxic insecticides used worldwide as well as some chemical warfare agents are phosphotriester derivatives. Therefore, detoxification of organophosphorus compounds has become the subject of many studies and in particular bioremediation, based on the phosphotriesterase catalysed hydrolysis of these compounds, has shown to be an effective and ecological methodology. In order to identify new bacterial phosphotriesterases, a simple and sensitive fluorimetric screening method on solid media was employed that allowed the selection of six strains with phosphotriesterase activity. Since pH and temperature are important parameters for bioremediation of contaminated soils and waters, the influence of these variables on the rate of the enzymatic hydrolysis was assessed. This study afforded notable results, being the most remarkable one the increased activity exhibited by Nocardia asteroides and Streptomyces setonii strains at 50°C, 7 and 30 times higher than at 30°C, respectively. Compared with the results obtained with Brevundimonas diminuta , whose activity is usually considered as reference, an increase of 26 and 75 times is observed, respectively.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-23
    Description: Neonicotinoids are neurotoxic systemic insecticides used in plant protection worldwide. Unfortunately, application of neonicotinoids affects both beneficial and target insects indiscriminately. Being water soluble and persistent, these pesticides are capable of disrupting both food chains and biogeochemical cycles. This review focuses on the biodegradation of neonicotinoids in soil and water systems by the bacterial community. Several bacterial strains have been isolated and identified as capable of transforming neonicotinoids in the presence of an additional carbon source. Environmental parameters have been established for accelerated transformation in some of these strains. Studies have also indicated that enhanced biotransformation of these pesticides can be accomplished by mixed microbial populations under optimised environmental conditions. Substantial research into the identification of neonicotinoid-mineralising bacterial strains and identification of the genes and enzymes responsible for neonicotinoid degradation is still required to complete the understanding of microbial biodegradation pathways, and advance bioremediation efforts.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-17
    Description: A complex disease generally results not from malfunction of individual molecules but from dysfunction of the relevant system or network, which dynamically changes with time and conditions. Thus, estimating a condition-specific network from a single sample is crucial to elucidating the molecular mechanisms of complex diseases at the system level. However, there is currently no effective way to construct such an individual-specific network by expression profiling of a single sample because of the requirement of multiple samples for computing correlations. We developed here with a statistical method, i.e. a sample-specific network (SSN) method, which allows us to construct individual-specific networks based on molecular expressions of a single sample. Using this method, we can characterize various human diseases at a network level. In particular, such SSNs can lead to the identification of individual-specific disease modules as well as driver genes, even without gene sequencing information. Extensive analysis by using the Cancer Genome Atlas data not only demonstrated the effectiveness of the method, but also found new individual-specific driver genes and network patterns for various types of cancer. Biological experiments on drug resistance further validated one important advantage of our method over the traditional methods, i.e. we can even identify such drug resistance genes that actually have no clear differential expression between samples with and without the resistance, due to the additional network information.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-12-17
    Description: Motivation: Many biological processes, such as cell cycle, circadian clock, menstrual cycles, are governed by oscillatory systems consisting of numerous components that exhibit rhythmic patterns over time. It is not always easy to identify such rhythmic components. For example, it is a challenging problem to identify circadian genes in a given tissue using time-course gene expression data. There is a great potential for misclassifying non-rhythmic as rhythmic genes and vice versa. This has been a problem of considerable interest in recent years. In this article we develop a constrained inference based methodology called Order Restricted Inference for Oscillatory Systems (ORIOS) to detect rhythmic signals. Instead of using mathematical functions (e.g. sinusoidal) to describe shape of rhythmic signals, ORIOS uses mathematical inequalities. Consequently, it is robust and not limited by the biologist's choice of the mathematical model. We studied the performance of ORIOS using simulated as well as real data obtained from mouse liver, pituitary gland and data from NIH3T3, U2OS cell lines. Our results suggest that, for a broad collection of patterns of gene expression, ORIOS has substantially higher power to detect true rhythmic genes in comparison to some popular methods, while also declaring substantially fewer non-rhythmic genes as rhythmic. Availability and Implementation: A user friendly code implemented in R language can be downloaded from http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/peddada/index.cfm . Contact: peddada@niehs.nih.gov
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-12-16
    Description: This study aimed to evaluate the survival and gene expression of Vibrio harveyi under starvation conditions. The microcosms V. harveyi were incubated in sterilized seawater for 4 weeks at room temperature. Overall, the cell numeration declined rapidly about 10 3 CFU/ml during starvation, with a tiny rebound at day 21. Scanning electron microscopy revealed that rod-shaped cells became sphere with a rippled cell surface. By polymerase chain reaction (PCR) assay, nine genes, named lux R, tox R, vhh B, fla A, top A, fur , rpo S, mre B and fts Z, were detected in the non-starved cells. In the starved cells, the expression levels of the detected genes declined substantially ranging from 0.005-fold to 0.028-fold compared to the non-starved cells performed by reverse transcription quantitative real-time PCR with 16S rRNA as the internal control. In the recovering cells, the expression levels of the detected genes, except lux R and mre B, were upregulated dramatically compared to the wild, especially top A (23.720-fold), fur (39.400-fold) and tox R (9.837-fold), validating that the expressions of both the metabolism and virulence genes were important for growth and survival of V. harveyi. The results may shed a new light on understanding of stress adaptation in bacteria.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-12-16
    Description: Type 1 fimbriae (T1F) are well characterised cell surface organelles expressed by Escherichia coli and required for adherence to mannosylated host tissue. They satisfy molecular Koch's postulates as a virulence determinant and a host-adapted role has been reinforced by reports that T1F expression is repressed at submammalian temperatures. Analysis of a group of 136 environmental and animal E. coli isolates that express T1F at 37°C showed that 28% are also capable of expression at 20°C, in a phase variable manner. The heterogeneous proportions varied widely, and although growth temperature impacted the total proportion expressing T1F, there was no direct correlation between growth at 37°C and 20°C, indicative of differences in thermoregulation of the genetic switch ( fimS ) that controls phase variation. Specificities of the adhesin (FimH) also varied between the isolates: most bound to α-(1-3) mannan and yeast extracts as expected, but some recognised β-(1-4)-mannans and N -linked glycoproteins from plants, and T1F from two of the isolates mediated binding to plant roots. The results expand our view of a well-described adherence factor to show alternative expression profiles and adhesin specificities, which in turn may confer an advantage for certain isolates in alternative hosts and habitats.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...