ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
  • Bayesian particle polishingbeam-induced motion correctioncryo-EMsingle-particle analysiselectron cryo-microscopy
  • American Institute of Physics  (1)
  • International Union of Crystallography (IUCr)  (1)
  • Springer Berlin Heidelberg  (1)
  • 1
    Publication Date: 2017-04-03
    Description: In this paper, we use data obtained from LiDAR measurements during an ash emission event on 15 November 2010 at Mt. Etna, in Italy, in order to evaluate the spatial distribution of volcanic ash in the atmosphere. A scanning LiDAR system, located at 7 km distance from the summit craters, was directed toward the volcanic vents and moved in azimuth and elevation to analyse different volcanic plume sections. During the measurements, ash emission from the North East Crater and high degassing from the Bocca Nuova Crater were clearly visible. Fromour analysis we were able to: (1) evaluate the region affected by the volcanic plume presence; (2) distinguish volcanic plumes containing spherical aerosols from those having non-spherical ones; and (3) estimate the frequency of volcanic ash emissions. Moreover, the spatial distribution of ash mass concentration was evaluated with an uncertainty of about 50 %.We found that, even during ash emission episodes characterised by low intensity like the 15 November 2010 event, the region in proximity of the summit craters should be avoided by air traffic operations, the ash concentration being greater than 4×10−3g/m3. The use of a scanning permanent LiDAR station may usefully monitor the volcanic activity and help to drastically reduce the risks to aviation operations during the frequent Etna eruptions.
    Description: Published
    Description: 2383-2395
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: lidar ; volcanic ash ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Institute of Physics
    Publication Date: 2020-02-24
    Description: A high-resolution Fabry–Perot interferometer was inserted in a feedback loop which, by monitoring elements of the fringe pattern, keeps the position of the transmitting window fixed with respect to a given line, taking into account the instability of the radiation source which would produce a wander of the line itself and the noise affecting the tuning of the receiving interferometer. The system, in this preliminary form, is able to lock itself and maintain its position indefinitely for slow and moderately fast varying disturbances.
    Description: Published
    Description: 2940-2944
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: JCR Journal
    Description: reserved
    Keywords: FABRY-PEROT ; INTERFEROMETER ; SERVOMECHANISMS ; FEEDBACK ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-11-09
    Description: A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the a posteriori likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this a posteriori likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative B factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in RELION-3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted.
    Keywords: Bayesian particle polishingbeam-induced motion correctioncryo-EMsingle-particle analysiselectron cryo-microscopy
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...