ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous  (3)
  • viscosity
  • Geological Society of London  (2)
  • American Institute of Physics
Collection
Years
  • 1
    Publication Date: 2020-11-26
    Description: We describe the evolution of the volcanic activity and deformation patterns observed at Mount Etna during the July–August 2001 eruption. Seismicity started at 3000 m below sea level on 13 July, accompanied by moderate ground swelling. Ground deformation culminated on 16 July with the development of a NE–SW graben c. 500 m wide and c. 1 m deep in the Cisternazza area at 2600–2500 m above sea level on the southern slope of the volcano. On 17 July, the eruption started at the summit of Mount Etna from the SE Crater (central–lateral eruptive system), from which two radial, c. 30 m wide, c. 3000 m long fracture zones, associated with eruptive fissures, propagated both southward (17 July) and northeastward (20 July). On 18 July, a new vent formed at 2100 m elevation, at the southern base of the Montagnola, followed on the next day by the opening of a vent further upslope, at 2550 m (eccentric eruptive system). The eruption lasted for 3 weeks. Approximately 80% of the total lava volume was erupted from the 2100 m and the 2550 m vents. The collected structural data suggest that the Cisternazza graben developed as a passive local response of the volcanic edifice to the ascent of a north–south eccentric dyke, which eventually reached the ground surface in the Montagnola area (18–19 July). In contrast, the two narrow fracture zones radiating from the summit are interpreted as the lateral propagation, from the conduit of the SE Crater, of north–south- and NE–SW-oriented shallow dykes, 2–3 m wide. The evolution of the fracture pattern together with other volcanological data (magma ascent and effusion rate, eruptive style, petrochemical characteristics of the erupted products, and petrology of xenoliths within magma) suggest that the eccentric and central–lateral eruptions were fed by two distinct magmatic systems. Examples of eccentric activity accompanied by central–lateral events have never been described before at Etna.
    Description: Published
    Description: 531-544
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Mount Etna ; July–August 2001 Eruption ; magmas ; dykes ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In February 2007, two effusive vents opened along the flank of Sciara del Fuoco (SdF) depression at Stromboli. The summit craters collapsed, obstructing the central conduit, choking the vents and increasing the deformation within SdF. Here a new vent opened, releasing the excess magmatic pressure. The eruption continued, after a summit explosion, until April. The vents were fed by laterally propagating dykes. Vent location is similar to that of the 2002-2003 eruption, fed by dykes triggering landslides, which in turn produced a tsunami. However, the 2007 eruption did not develop landslides, suggesting that their triggering also depends on other factors, (i.e. magmatic pressure).
    Description: This work was funded by INGV and Dipartimento Protezione Civile, Italy, project INGV-DPC V2.
    Description: Published
    Description: 883-886
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: dike ; volcano-tectonics ; volcanic hazard ; sector collapse ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The effect of pressure on melt viscosity was investigated for five compositions along the join An(CaAl2Si2O8)–Di(CaMgSi2O6) and four alkali silicates containing lithium, sodium, and potassium in constant ratio of ∼ 1:1:1, but alkali-silica ratios are varying. The experiments were performed in an internally heated gas pressure vessel at pressures from 50 to 400 MPa in the viscosity range from 108 to 1011.5 Pa⋅s using parallel plate viscometry. The polymerized An composition shows a negative pressure dependence of viscosity while the other, more depolymerized compositions of the join An–Di have neutral to positive pressure coefficients. The alkali silicates display neutral to slightly positive pressure coefficients for melt viscosity. These findings in the high viscosity range of 108–1011 Pa⋅s, where pressure appears to be more efficient than in low viscous melts at high temperature, are consistent with previous results on the viscosity of polymerized to depolymerized melts in the system NaAlSi3O8–CaMgSi2O6 by Behrens and Schulze [ H. Behrens and F. Schulze, Am. Mineral. 88, 1351 (2003) ]. Thus we confirm that the sign of the pressure coefficient for viscosity is mainly related to the degree of melt polymerization in silicate and aluminosilicate melts.
    Description: DFG Grant n.°BE1720/9
    Description: Published
    Description: 044504-14
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: open
    Keywords: viscosity ; polymerisation ; anorthite ; diopside ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...