ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (232,450)
Collection
Years
  • 1
    Publication Date: 2024-04-05
    Description: Rayleigh wave ellipticity measurements from seismic ambient noise recorded on the Greenland Ice Sheet (GrIS) show complex and anomalous behavior at wave periods sensitive to ice (T 〈 3–4 s). To understand these complex observations, we compare them with synthetic ellipticity measurements obtained from synthetic ambient noise computed for various seismic velocity and attenuation models, including surface wave overtone effects. We find that in dry snow conditions within the interior of the GrIS, to first order the anomalous ellipticity observations can be explained by ice models associated with the accumulation and densification of snow into firn. We also show that the distribution of ellipticity measurements is strongly sensitive to seismic attenuation and the thermal structure of the ice. Our results suggest that Rayleigh wave ellipticity is well suited for monitoring changes in firn properties and thermal composition of the Greenland and Antarctic ice sheets in a changing climate.
    Description: Published
    Description: e2023GL103673
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3Journal of Geophysical Research (JGR): Biogeosciences, American Geophysical Union, 129, ISSN: 2169-8953
    Publication Date: 2024-04-19
    Description: Arctic warming increases the degradation of permafrost soils but little is known about floodplain soils in the permafrost region. This study quantifies soil organic carbon (SOC) and soil nitrogen stocks, and the potential CH4 and CO2 production from seven cores in the active floodplains in the Lena River Delta, Russia. The soils were sandy but highly heterogeneous, containing deep, organic rich deposits with 〉60% SOC stored below 30 cm. The mean SOC stocks in the top 1 m were 12.9 ± 6.0 kg C m−2. Grain size analysis and radiocarbon ages indicated highly dynamic environments with sediment re-working. Potential CH4 and CO2 production from active floodplains was assessed using a 1-year incubation at 20°C under aerobic and anaerobic conditions. Cumulative aerobic CO2 production mineralized a mean 4.6 ± 2.8% of initial SOC. The mean cumulative aerobic:anaerobic C production ratio was 2.3 ± 0.9. Anaerobic CH4 production comprised 50 ± 9% of anaerobic C mineralization; rates were comparable or exceeded those for permafrost region organic soils. Potential C production from the incubations was correlated with total organic carbon and varied strongly over space (among cores) and depth (active layer vs. permafrost). This study provides valuable information on the carbon cycle dynamics from active floodplains in the Lena River Delta and highlights the key spatial variability, both among sites and with depth, and the need to include these dynamic permafrost environments in future estimates of the permafrost carbon-climate feedback.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-25
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 127(8), (2022): e2021JB023814, https://doi.org/10.1029/2021jb023814.
    Description: Early arrival traveltime tomography and full waveform inversion were conducted on downward continued streamer seismic data at Dante's Domes oceanic core complex (OCC), providing unprecedented details of shallow P wave velocity structure. Together with reverse time migration images, seafloor morphology, in situ geological samples, magnetic and gravity data, the seismic constraints are used to infer the lithological distribution along the seismic profiles. Based on the striking similarity in velocity structure beneath the corrugated domes with other OCCs and drilling results from Atlantis Massif, we confidently reconfirmed the Southern Dome as dominantly gabbroic rocks, and the Northern Dome as serpentinized peridotites. A series of isolated gabbroic bodies embedded in the diabase and basaltic layers is observed in the breakaway zone, suggesting that the initiation of Dante's Domes OCC occurred over a long period during which there were several failed attempts to form a long-lived detachment fault. This early development of the OCC probably occurred under a regime of alternating magma starvation and magma replenishment. The predominantly gabbroic section, beneath the Southern Dome and extending to termination, indicates the OCC has been created with relatively high magma flux. We also imaged distinct shallow subseafloor reflections which are also termed as D reflectors underneath the corrugated domes. The location of the D reflectors is similar to those in the Atlantis Massif, with depths well correlated with the top of exhumed gabbroic bodies and the discontinuities in the D reflectors between gabbroic bodies. Our findings contribute to the understanding of processes controlling the OCCs initiation and evolution at slow spreading ridges.
    Description: This research was supported by the National Natural Science Foundation of China (91858207), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (GML2019ZD0205), and Guangdong Basic and Applied Basic Research Foundation (2021B1515020023). M. X. acknowledges support from Special Foundation for National Science and Technology Basic Research Program of China (2018FY100505), Guangdong NSF research team project (2017A030312002), K. C. Wong Education Foundation (GJTD-2018-13), and the Chinese Academy of Sciences (Y4SL021001, QYZDY-SSWDQC005, 133244KYSB20180029, 131551KYSB20200021, and ISEE2021PY03). J. P. C. acknowledges support from the Independent Research and Development Program at WHOI.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-25
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(8),(2022): e2022JC018737, https://doi.org/10.1029/2022jc018737.
    Description: Gulf Stream Warm Core Rings (WCRs) have important influences on the New England Shelf and marine ecosystems. A 10-year (2011–2020) WCR dataset that tracks weekly WCR locations and surface areas is used here to identify the rings' path and characterize their movement between 55 and 75°W. The WCR dataset reveals a very narrow band between 66 and 71°W along which rings travel almost due west along ∼39°N across isobaths – the “Ring Corridor.” Then, west of the corridor, the mean path turns southwestward, paralleling the shelfbreak. The average ring translation speed along the mean path is 5.9 cm s−1. Long-lived rings (lifespan 〉150 days) tend to occupy the region west of the New England Seamount Chain (NESC) whereas short-lived rings (lifespan 〈150 days) tend to be more broadly distributed. WCR vertical structures, analyzed using available Argo float profiles indicate that rings that are formed to the west of the NESC have shallower thermoclines than those formed to the east. This tendency may be due to different WCR formation processes that are observed to occur along different sections of the Gulf Stream. WCRs formed to the east of the NESC tend to form from a pinch-off mechanism incorporating cores of Sargasso Sea water and a perimeter of Gulf Stream water. WCRs that form to the west of the NESC, form from a process called an aneurysm. WCRs formed through aneurysms comprise water mostly from the northern half of the Gulf Stream and are smaller than the classic pinch-off rings.
    Description: AS and AG are grateful for financial support from NOAA (NA11NOS0120038), NSF (OCE-1851242 and OCE-2123283), SMAST, and UMass Dartmouth. GG was supported by NSF under grant OCE-1657853. MA was supported by NSF under grant OCE-2122726 and by ONR under grant N00014-22-1-2112.
    Keywords: Gulf Stream ; Warm core rings ; Trajectories ; Eddies ; Aneurysm ; Ring formation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-25
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biasi, J., Asimow, P., Horton, F., & Boyes, X. Eruption rates, tempo, and stratigraphy of Paleocene flood basalts on Baffin Island, Canada. Geochemistry, Geophysics, Geosystems, 23(9), (2022): e2021GC010172, https://doi.org/10.1029/2021gc010172.
    Description: High-temperature melting in mantle plumes produces voluminous eruptions that are often temporally coincident with mass extinctions. Paleocene Baffin Island lavas—products of early Iceland mantle plume activity—are exceptionally well characterized geochemically but have poorly constrained stratigraphy, geochronology, and eruptive tempos. To provide better geologic context, we measured seven stratigraphic sections of the volcanic deposits and collected paleomagnetic data from 38 sites in the lavas and underlying Cretaceous sediments (Quqaluit Fm.). The average paleomagnetic pole from this study does not overlap with the expected pole for a stable North American locality at 60 Ma, yet the data have sufficient dispersion to average out secular variation. After ruling out other possibilities, we find that the picrites were probably erupted during a polarity transition, over less than 5 kyr. If so, the average eruption interval was ∼67 years per flow for the thickest sequence of exposed lavas. We also calculate that the flood basalts had a minimum total volume of ∼176 km3 (excluding submerged lavas in Baffin Bay). This implies a minimum eruption rate of ∼0.035 km3 yr−1, which is similar to rates found in West Greenland lavas but less than rates found in larger flood basalts. Despite this, the Baffin and West Greenland lavas temporally correlate with the “End C27n event” (a period of ∼2°C global warming) and may be its underlying cause.
    Description: his work was supported by the National Science Foundation (award #1911699 to F. Horton and award #2052963 to J. Biasi), Woods Hole Oceanographic Institution (WHOI) Andrew W. Mellon Foundation Endowed Fund for Innovative Research, a National Geographic Society grant (#CP4-144R-18), and internal funding from the Caltech Geological and Planetary Sciences Division.
    Keywords: Baffin island ; North Atlantic ; Flood basalt ; Paleomagnetism ; Volcanology ; Secular variation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-21
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49(15), (2022): e2022GL099185, https://doi.org/10.1029/2022gl099185.
    Description: Several large strike slip faults in central and northern California accommodate plate motions through aseismic creep. Although there is no consensus regarding the underlying cause of aseismic creep, aqueous fluids and mechanically weak, velocity-strengthening minerals appear to play a central role. This study integrates field observations and thermodynamic modeling to examine possible relationships between the occurrence of serpentinite, silica-carbonate rock, and CO2-rich aqueous fluids in creeping faults of California. Our models predict that carbonation of serpentinite leads to the formation of talc and magnesite, followed by silica-carbonate rock. While abundant exposures of silica-carbonate rock indicate complete carbonation, serpentinite-hosted CO2-rich spring fluids are strongly supersaturated with talc at elevated temperatures. Hence, carbonation of serpentinite is likely ongoing in parts of the San Andres Fault system and operates in conjunction with other modes of talc formation that may further enhance the potential for aseismic creep, thereby limiting the potential for large earthquakes.
    Description: This work was supported by National Science Foundation (NSF) grants NSF-EAR-1220280 to F. K. and J. L., NSF-EAR-1219908 to D. G., and NSF-OCE-2001728 to J. L.
    Keywords: Mineral carbonation ; Serpentinite ; Talc ; CO2 ; Aseismic creep ; San Andreas Fault
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-21
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marsay, C. M., Landing, W. M., Umstead, D., Till, C. P., Freiberger, R., Fitzsimmons, J. N., Lanning, N. T., Shiller, A. M., Hatta, M., Chmiel, R., Saito, M., & Buck, C. S. Does sea spray aerosol contribute significantly to aerosol trace element loading? a case study from the US GEOTRACES Pacific Meridional Transect (GP15). Global Biogeochemical Cycles, 36(8), (2022): e2022GB007416. https://doi.org/10.1029/2022GB007416.
    Description: Atmospheric deposition represents a major input for micronutrient trace elements (TEs) to the surface ocean and is often quantified indirectly through measurements of aerosol TE concentrations. Sea spray aerosol (SSA) dominates aerosol mass concentration over much of the global ocean, but few studies have assessed its contribution to aerosol TE loading, which could result in overestimates of “new” TE inputs. Low-mineral aerosol concentrations measured during the U.S. GEOTRACES Pacific Meridional Transect (GP15; 152°W, 56°N to 20°S), along with concurrent towfish sampling of surface seawater, provided an opportunity to investigate this aspect of TE biogeochemical cycling. Central Pacific Ocean surface seawater Al, V, Mn, Fe, Co, Ni, Cu, Zn, and Pb concentrations were combined with aerosol Na data to calculate a “recycled” SSA contribution to aerosol TE loading. Only vanadium was calculated to have a SSA contribution averaging 〉1% along the transect (mean of 1.5%). We derive scaling factors from previous studies on TE enrichments in the sea surface microlayer and in freshly produced SSA to assess the broader potential for SSA contributions to aerosol TE loading. Maximum applied scaling factors suggest that SSA could contribute significantly to the aerosol loading of some elements (notably V, Cu, and Pb), while for others (e.g., Fe and Al), SSA contributions largely remained 〈1%. Our study highlights that a lack of focused measurements of TEs in SSA limits our ability to quantify this component of marine aerosol loading and the associated potential for overestimating new TE inputs from atmospheric deposition.
    Description: This research was supported by the National Science Foundation (NSF) grants OCE-1756103 to C. S. Buck, OCE-1756104 to W. M. Landing, OCE-1737024 to A.M. Shiller, OCE-1736906 to M. Hatta, OCE-1736875 to C. P. Till, OCE-1737167 to J. N. Fitzsimmons, and OCE-1736599 to M. Saito. In addition, N. T. Lanning was supported by the NSF Graduate Research Fellowship Program award 1746932.
    Keywords: Aerosols ; Trace elements ; GEOTRACES ; Sea spray aerosol ; Pacific Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-21
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 127(8), (2022): e2022JB024497, https://doi.org/10.1029/2022JB024497.
    Description: During plastic deformation, strain weakening can be achieved, in part, via strain energy reduction associated with intragranular boundary development and grain boundary formation. Grain boundaries (in 2D) are segments between triple junctions, that connect to encircle grains; every boundary segment in the encircling loop has a high (〉10°) misorientation angle. Intragranular boundaries terminate within grains or dissect grains, usually containing boundary segments with a low (〈10°) misorientation angle. We analyze electron backscatter diffraction (EBSD) data from ice deformed at −30°C (Th≈ 0.9). Misorientation and weighted Burgers vector (WBV) statistics are calculated along planar intragranular boundaries. Misorientation angles change markedly along each intragranular boundary, linking low- (〈10°) and high-angle (10–38°) segments that exhibit distinct misorientation axes and WBV directions. We suggest that these boundaries might be produced by the growth and intersection of individual intragranular boundary segments comprising dislocations with distinct slip systems. There is a fundamental difference between misorientation axis distributions of intragranular boundaries (misorientation axes mostly confined to ice basal plane) and grain boundaries (no preferred misorientation axis). These observations suggest during progressive subgrain rotation, intragranular boundaries remain crystallographically controlled up to large misorientation angles (〉〉10°). In contrast, the apparent lack of crystallographic control for grain boundaries suggests misorientation axes become randomized, likely due to the activation of additional mechanisms (such as grain boundary sliding) after grain boundary formation, linking boundary segments to encircle a grain. Our findings on ice intragranular boundary development and grain boundary formation may apply more broadly to other rock-forming minerals (e.g., olivine, quartz).
    Description: This work was supported by a NASA fund (Grant No. NNX15AM69G) to David L. Goldsby and two Marsden Funds of the Royal Society of New Zealand (Grant Nos. UOO1116, UOO052) to David J. Prior. Sheng Fan was supported by the University of Otago doctoral scholarship, the Antarctica New Zealand doctoral scholarship, a research grant from New Zealand Ministry of Business, Innovation and Employment through the Antarctic Science Platform (ANTA1801) (Grant No. ASP-023-03), and a New Zealand Antarctic Research Institute (NZARI) Early Career Researcher Seed Grant (Grant No. NZARI 2020-1-5). Open access publishing facilitated by University of Otago, as part of the Wiley – University of Otago agreement via the Council of Australian University Librarians.
    Keywords: High temperature deformation ; Misorientation ; Weighted Burgers vector ; Intragranular boundary ; Grain boundary ; Boundary geometry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-07
    Description: We present measurements of soil CO2 effluxes combined with soil (222Rn) and (220Rn) from two high-degassing areas on the lower flanks of Mt. Etna volcano (ZE-SV on the E flank and PAT on the SW flank). Measurements were conducted periodically from June 2006 to January 2009 in the ZE-SV area and January 2007 to January 2009 in the PAT area. The results showed significant variations in discharge activity and style. Log values of (220Rn)/(222Rn) and CO2 efflux generally follow a negative correlation, herein parameterized as the Soil Gas Disequilibrium Index (SGDI). Deviations of the SGDI from this negative correlation provide insight into variance of localized and shallow system conditions, namely rock fracturing, residual magma degassing, and near surface interactions between magmatic gases and groundwater. Statistical analysis highlighted signal anomalies, both negative and positive, that were modeled according to the physical properties and the modes of transport for each of the SGDI gas components. The revealed anomalies show correspondence with episodes of magma ascent and eruption, thereby demonstrating the potential of using the SGDI as another instrument for forecasting volcanic activity. An important strength of the SGDI, compared to other magma gas proxies like CO2 or SO2, is that the very short and very different half-lives of 222Rn (t1/2 = 3.85 days) and 220Rn (t1/2 = 55 seconds) provide unique information on the timescales of soil gas transport. Coupling the SGDI with other pre-eruptive proxies enhances the volcanological community’s response capabilities, which is critical for effective hazard mitigation.
    Description: Published
    Description: 167-202
    Description: 4V. Processi pre-eruttivi
    Keywords: Soil gases ; radon ; carbon dioxide ; volcano monitoring ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-16
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fabbrizzi, A., Parnell‐Turner, R., Gregg, P., Fornari, D., Perfit, M., Wanless, V., & Anderson, M. Relative timing of off‐axis volcanism from sediment thickness estimates on the 8°20’N seamount chain, East Pacific Rise. Geochemistry, Geophysics, Geosystems, 23(9), (2022): e2022GC010335, https://doi.org/10.1029/2022gc010335.
    Description: Volcanic seamount chains on the flanks of mid-ocean ridges record variability in magmatic processes associated with mantle melting over several millions of years. However, the relative timing of magmatism on individual seamounts along a chain can be difficult to estimate without in situ sampling and is further hampered by Ar40/Ar39 dating limitations. The 8°20’N seamount chain extends ∼170 km west from the fast-spreading East Pacific Rise (EPR), north of and parallel to the western Siqueiros fracture zone. Here, we use multibeam bathymetric data to investigate relationships between abyssal hill formation and seamount volcanism, transform fault slip, and tectonic rotation. Near-bottom compressed high-intensity radiated pulse, bathymetric, and sidescan sonar data collected with the autonomous underwater vehicle Sentry are used to test the hypothesis that seamount volcanism is age-progressive along the seamount chain. Although sediment on seamount flanks is likely to be reworked by gravitational mass-wasting and current activity, bathymetric relief and Sentry vehicle heading analysis suggest that sedimentary accumulations on seamount summits are likely to be relatively pristine. Sediment thickness on the seamounts' summits does not increase linearly with nominal crustal age, as would be predicted if seamounts were constructed proximal to the EPR axis and then aged as the lithosphere cooled and subsided away from the ridge. The thickest sediments are found at the center of the chain, implying the most ancient volcanism there, rather than on seamounts furthest from the EPR. The nonlinear sediment thickness along the 8°20’N seamounts suggests that volcanism can persist off-axis for several million years.
    Description: This work was supported by National Science Foundation awards OCE-1356610, OCE-1356822, OCE-1357150, OCE-1754419, OCE-1834797, OCE-2001314, and OCE-2001331.
    Keywords: Off-axis seamounts ; East Pacific Rise ; Sediment thickness ; Seafloor morphology ; Autonomous underwater vehicle ; Eruption history
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-02-17
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(19), (2021): e2021GL095088, https://doi.org/10.1029/2021GL095088.
    Description: The physical circulation of the Southern Ocean sets the surface concentration and thus air-sea exchange of CO2. However, we have a limited understanding of the three-dimensional circulation that brings deep carbon-rich waters to the surface. Here, we introduce and analyze a novel high-resolution ocean model simulation with active biogeochemistry and online Lagrangian particle tracking. We focus our attention on a subset of particles with high dissolved inorganic carbon (DIC) that originate below 1,000 m and eventually upwell into the near-surface layer (upper 200 m). We find that 71% of the DIC-enriched water upwelling across 1,000 m is concentrated near topographic features, which occupy just 33% of the Antarctic Circumpolar Current. Once particles upwell to the near-surface layer, they exhibit relatively uniform pCO2 levels and DIC decorrelation timescales, regardless of their origin. Our results show that Southern Ocean bathymetry plays a key role in delivering carbon-rich waters to the surface.
    Description: Riley X. Brady was supported by the Department of Energy's Computational Science Graduate Fellowship (DE-FG02-97ER25308), and particularly benefited from the fellowship's summer practicum at Los Alamos National Lab. Nicole S. Lovenduski and Riley X. Brady were further supported by the U.S. Department of Energy Biological and Environmental Research program (DE-SC0022243) and by the National Science Foundation (NSF-PLR 1543457; NSF-OCE 1924636; NSF-OCE 1752724; NSF-OCE 1558225). Mathew E. Maltrud and Phillip J. Wolfram were supported as part of the Energy Exascale Earth System Model (E3SM) project, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research. This research used resources provided by the Los Alamos National Laboratory Institutional Computing Program, which is supported by the U.S. Department of Energy National Nuclear Security Administration under Contract No. 89233218CNA000001.
    Keywords: Southern Ocean ; Carbon cycle ; Upwelling ; Lagrangian modeling ; Ocean biogeochemistry ; Climate modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-02-28
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seltzer, A. M., & Tyne, R. L. Retrieving a “Weather Balloon” from the last Ice Age. AGU Advances, 3(4), (2022): e2022AV000747, https://doi.org/10.1029/2022AV000747.
    Description: “How cold was the last ice age?” is a question that paleoclimate scientists have been trying to answer for decades. Constraining the magnitude of climate change since the Last Glacial Maximum (∼20,000 years ago) can help improve our understanding of Earth's climate sensitivity and, therefore enhance our ability to predict future change (Tierney et al., 2020). Of course, there is no single answer to this question: there is spatial structure to LGM temperature change that is linked to fundamental climate system properties and processes. Consequently, paleoclimate scientists have focused on variations of this question, like “What was the latitudinal gradient of LGM temperature change?” (Chiang et al., 2003), “What was the land-sea contrast?” (Rind & Peteet, 1985) or “What was the change in ocean heat content?” (Bereiter et al., 2018). These questions inform large-scale atmospheric and oceanic circulation, the intensity of the water cycle, and planetary energy balance; the answers to these questions come from proxies like planktic and benthic foraminifera, speleothems, ice cores, pollen records, ancient groundwater, lake sediments, and glacial moraines, to name a few. In short, the paleoclimate community has developed a proxy “tool kit” equipped to map changes across the Earth's surface and into the ocean interior; but, until now, no “tool” existed for the upper atmosphere.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-02-28
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 36(8), (2022): e2022GB007320, https://doi.org/10.1029/2022GB007320.
    Description: Biogeochemical cycles in the Arctic Ocean are sensitive to the transport of materials from continental shelves into central basins by sea ice. However, it is difficult to assess the net effect of this supply mechanism due to the spatial heterogeneity of sea ice content. Manganese (Mn) is a micronutrient and tracer which integrates source fluctuations in space and time while retaining seasonal variability. The Arctic Ocean surface Mn maximum is attributed to freshwater, but studies struggle to distinguish sea ice and river contributions. Informed by observations from 2009 IPY and 2015 Canadian GEOTRACES cruises, we developed a three-dimensional dissolved Mn model within a 1/12° coupled ocean-ice model centered on the Canada Basin and the Canadian Arctic Archipelago (CAA). Simulations from 2002 to 2019 indicate that annually, 87%–93% of Mn contributed to the Canada Basin upper ocean is released by sea ice, while rivers, although locally significant, contribute only 2.2%–8.5%. Downstream, sea ice provides 34% of Mn transported from Parry Channel into Baffin Bay. While rivers are often considered the main source of Mn, our findings suggest that in the Canada Basin they are less important than sea ice. However, within the shelf-dominated CAA, both rivers and sediment resuspension are important. Climate-induced disruption of the transpolar drift may reduce the Canada Basin Mn maximum and supply downstream. Other micronutrients found in sediments, such as Fe, may be similarly affected. These results highlight the vulnerability of the biogeochemical supply mechanisms in the Arctic Ocean and the subpolar seas to climatic changes.
    Description: This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Climate Change and Atmospheric Research Grant: GEOTRACES (RGPCC 433848-12) and VITALS (RGPCC 433898), an NSERC Discovery Grant (RGPIN-2016-03865) to SEA, and by the University of British Columbia through a four year fellowship to BR. Computing resources were provided by Compute Canada (RRG 2648 RAC 2019, RRG 2969 RAC 2020, and RRG 1541 RAC 2021).
    Keywords: GEOTRACES ; Arctic Ocean ; Trace elements ; Canadian Arctic Archipelago ; Ocean modeling ; Micronutrients
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-02-28
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Shinevar, W., Jagoutz, O., & Behn, M. WISTFUL: whole‐rock interpretative seismic toolbox for ultramafic lithologies. Geochemistry, Geophysics, Geosystems, 23(8), (2022): e2022GC010329, https://doi.org/10.1029/2022gc010329.
    Description: To quantitatively convert upper mantle seismic wave speeds measured into temperature, density, composition, and corresponding and uncertainty, we introduce the Whole-rock Interpretative Seismic Toolbox For Ultramafic Lithologies (WISTFUL). WISTFUL is underpinned by a database of 4,485 ultramafic whole-rock compositions, their calculated mineral modes, elastic moduli, and seismic wave speeds over a range of pressure (P) and temperature (T) (P = 0.5–6 GPa, T = 200–1,600°C) using the Gibbs free energy minimization routine Perple_X. These data are interpreted with a toolbox of MATLAB® functions, scripts, and three general user interfaces: WISTFUL_relations, which plots relationships between calculated parameters and/or composition; WISTFUL_geotherms, which calculates seismic wave speeds along geotherms; and WISTFUL_inversion, which inverts seismic wave speeds for best-fit temperature, composition, and density. To evaluate our methodology and quantify the forward calculation error, we estimate two dominant sources of uncertainty: (a) the predicted mineral modes and compositions, and (b) the elastic properties and mixing equations. To constrain the first source of uncertainty, we compiled 122 well-studied ultramafic xenoliths with known whole-rock compositions, mineral modes, and estimated P-T conditions. We compared the observed mineral modes with modes predicted using five different thermodynamic solid solution models. The Holland et al. (2018, https://doi.org/10.1093/petrology/egy048) solution models best reproduce phase assemblages (∼12 vol. % phase root-mean-square error [RMSE]) and estimated wave speeds. To assess the second source of uncertainty, we compared wave speed measurements of 40 ultramafic rocks with calculated wave speeds, finding excellent agreement (Vp RMSE = 0.11 km/s). WISTFUL easily analyzes seismic datasets, integrates into modeling, and acts as an educational tool.
    Description: Funding for this study was provided by NSF Grants EAR-17-22935 (OJ) and EAR-18-44340 (MB).
    Keywords: Seismic velocity ; Seismic wave speed ; Thermodynamic modeling ; Density ; Composition ; Elastic moduli
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-03-02
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 36(9), (2022): e2021GB007145, https://doi.org/10.1029/2021gb007145.
    Description: In this study, we compare mechanistic and empirical approaches to reconstruct the air-sea flux of biological oxygen (F[O2]bio-as) by parameterizing the physical oxygen saturation anomaly (ΔO2[phy]) in order to separate the biological contribution from total oxygen. The first approach matches ΔO2[phy] to the monthly climatology of the argon saturation anomaly from a global ocean circulation model's output. The second approach derives ΔO2[phy] from an iterative mass balance model forced by satellite-based physical drivers of ΔO2[phy] prior to the sampling day by assuming that air-sea interactions are the dominant factors driving the surface ΔO2[phy]. The final approach leverages the machine-learning technique of Genetic Programming (GP) to search for the functional relationship between ΔO2[phy] and biophysicochemical parameters. We compile simultaneous measurements of O2/Ar and O2 concentration from 14 cruises to train the GP algorithm and test the validity and applicability of our modeled ΔO2[phy] and F[O2]bio-as. Among the approaches, the GP approach, which incorporates ship-based measurements and historical records of physical parameters from the reanalysis products, provides the most robust predictions (R2 = 0.74 for ΔO2[phy] and 0.72 for F[O2]bio-as; RMSE = 1.4% for ΔO2[phy] and 7.1 mmol O2 m−2 d−1 for F[O2]bio-as). We use the empirical formulation derived from GP approach to reconstruct regional, inter-annual, and decadal variability of F[O2]bio-as based on historical oxygen records. Overall, our study represents a first attempt at deriving F[O2]bio-as from snapshot measurements of oxygen, thereby paving the way toward using historical O2 data and a rapidly growing number of O2 measurements on autonomous platforms for independent insight into the biological pump.
    Description: N. Cassar was supported by the “Laboratoire d'Excellence” LabexMER (ANR-10-LABX-19) and co-funded by a grant from the French government under the program “Investissements d'Avenir.” Y. Huang was supported by grants from the China NSF (Nos. 42130401 and 42141002). Y. Huang was also partly supported by Chinese State Scholarship Fund to study at Duke University as a joint PhD student (No. 201806310052). R. Eveleth was supported by the NSF GRFP under grant (No. 1106401). D. Nicholson was supported by the NSF OCE-1129973 and OCE-1923915.
    Keywords: Air-sea gas biological oxygen flux ; Physical oxygen saturation anomaly ; Total dissolved oxygen ; Mechanistic and empirical models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-03-08
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sayani, H., Cobb, K., Monteleone, B., & Bridges, H. Accuracy and reproducibility of coral Sr/Ca SIMS timeseries in modern and fossil corals. Geochemistry, Geophysics, Geosystems, 23(9), (2022): e2021GC010068, https://doi.org/10.1029/2021gc010068.
    Description: Coral strontium-to-calcium ratios (Sr/Ca) provide quantitative estimates of past sea surface temperatures (SST) that allow for the reconstruction of changes in the mean state and climate variations, such as the El Nino-Southern Oscillation, through time. However, coral Sr/Ca ratios are highly susceptible to diagenesis, which can impart artifacts of 1–2°C that are typically on par with the tropical climate signals of interest. Microscale sampling via Secondary Ion Mass Spectrometry (SIMS) for the sampling of primary skeletal material in altered fossil corals, providing much-needed checks on fossil coral Sr/Ca-based paleotemperature estimates. In this study, we employ a set modern and fossil corals from Palmyra Atoll, in the central tropical Pacific, to quantify the accuracy and reproducibility of SIMS Sr/Ca analyses relative to bulk Sr/Ca analyses. In three overlapping modern coral samples, we reproduce bulk Sr/Ca estimates within ±0.3% (1σ). We demonstrate high fidelity between 3-month smoothed SIMS coral Sr/Ca timeseries and SST (R = −0.5 to −0.8; p 〈 0.5). For lightly-altered sections of a young fossil coral from the early-20th century, SIMS Sr/Ca timeseries reproduce bulk Sr/Ca timeseries, in line with our results from modern corals. Across a moderately-altered section of the same fossil coral, where diagenesis yields bulk Sr/Ca estimates that are 0.6 mmol too high (roughly equivalent to −6°C artifacts in SST), SIMS Sr/Ca timeseries track instrumental SST timeseries. We conclude that 3–4 SIMS analyses per month of coral growth can provide a much-needed quantitative check on the accuracy of fossil coral Sr/Ca-derived estimates of paleotemperature, even in moderately altered samples.
    Description: We'd also like to thank Yolande Berta and Georgia Tech's Center for Nanostructure Characterization for providing access to their SEM facilities, and the Khaled bin Sultan Living Ocean Foundation and The Nature Conservancy for financial and logistical support for field excursions to Palmyra. Funding for this work was provided by the National Science Foundation (Award Numbers 1502832 and 2002458 to K.M.C) and the National Oceanic and Atmospheric Administration (Award Number: NA11OAR4310165 to K.M.C).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-03-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tarry, D., Ruiz, S., Johnston, T., Poulain, P., Özgökmen, T., Centurioni, L., Berta, M., Esposito, G., Farrar, J., Mahadevan, A., & Pascual, A. Drifter observations reveal intense vertical velocity in a surface ocean front. Geophysical Research Letters, 49(18), (2022): e2022GL098969, https://doi.org/10.1029/2022gl098969.
    Description: Measuring vertical motions represent a challenge as they are typically 3–4 orders of magnitude smaller than the horizontal velocities. Here, we show that surface vertical velocities are intensified at submesoscales and are dominated by high frequency variability. We use drifter observations to calculate divergence and vertical velocities in the upper 15 m of the water column at two different horizontal scales. The drifters, deployed at the edge of a mesoscale eddy in the Alboran Sea, show an area of strong convergence (urn:x-wiley:00948276:media:grl64766:grl64766-math-0001(f)) associated with vertical velocities of −100 m day−1. This study shows that a multilayered-drifter array can be an effective tool for estimating vertical velocity near the ocean surface.
    Description: This research was supported by the Office of Naval Research (ONR) Departmental Research Initiative CALYPSO under program officers Terri Paluszkiewicz and Scott Harper. The authors' ONR Grant No. are as follows: DT, SR, AM, and AP N000141613130, TMSJ N000146101612470, PP N000141812418, TO N000141812138, LRC N000141712517, and N00014191269, MB and GE N000141812782 and N000141812039, and JTF N000141812431.
    Keywords: Drifters ; Vertical velocity ; Submesoscale ; Kinematic properties ; Fronts ; Alboran Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-03-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biasi, J., Tivey, M., & Fluegel, B. Volcano monitoring with magnetic measurements: a simulation of eruptions at axial seamount, Kilauea, Baroarbunga, and Mount Saint Helens. Geophysical Research Letters, 49(17), (2022): e2022GL100006, https://doi.org/10.1029/2022GL100006.
    Description: Monitoring of active volcanic systems is a challenging task due in part to the trade-offs between collection of high-quality data from multiple techniques and the high costs of acquiring such data. Here we show that magnetic data can be used to monitor volcanoes by producing similar data to gravimetric techniques at significantly lower cost. The premise of this technique is that magma and wall rock above the Curie temperature are magnetically “transparent,” but not stationary within the crust. Subsurface movements of magma can affect the crustal magnetic field measured at the surface. We construct highly simplified magnetic models of four volcanic systems: Mount Saint Helens (1980), Axial Seamount (2015–2020), Kīlauea (2018), and Bárðarbunga (2014). In all cases, observed or inferred changes to the magmatic system would have been detectable by modern magnetometers. Magnetic monitoring could become common practice at many volcanoes, particularly in developing nations with high volcanic risk.
    Description: This work was supported by the NSF Grant No 2052963 to J. Biasi and an internal Woods Hole Oceanographic Institution grant to M. Tivey.
    Keywords: Magnetism ; Volcanic hazards ; Hawaii ; Iceland ; Volcanology ; Monitoring
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-03-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bullock, E., Kipp, L., Moore, W., Brown, K., Mann, P., Vonk, J., Zimov, N., & Charette, M. Radium inputs into the Arctic Ocean from rivers a basin‐wide estimate. Journal of Geophysical Research: Oceans, 127(9), (2022): e2022JC018964, https://doi.org/10.1029/2022jc018964.
    Description: Radium isotopes have been used to trace nutrient, carbon, and trace metal fluxes inputs from ocean margins. However, these approaches require a full accounting of radium sources to the coastal ocean including rivers. Here, we aim to quantify river radium inputs into the Arctic Ocean for the first time for 226Ra and to refine the estimates for 228Ra. Using new and existing data, we find that the estimated combined (dissolved plus desorbed) annual 226Ra and 228Ra fluxes to the Arctic Ocean are [7.0–9.4] × 1014 dpm y−1 and [15–18] × 1014 dpm y−1, respectively. Of these totals, 44% and 60% of the river 226Ra and 228Ra, respectively are from suspended sediment desorption, which were estimated from laboratory incubation experiments. Using Ra isotope data from 20 major rivers around the world, we derived global annual 226Ra and 228Ra fluxes of [7.4–17] × 1015 and [15–27] × 1015 dpm y−1, respectively. As climate change spurs rapid Arctic warming, hydrological cycles are intensifying and coastal ice cover and permafrost are diminishing. These river radium inputs to the Arctic Ocean will serve as a valuable baseline as we attempt to understand the changes that warming temperatures are having on fluxes of biogeochemically important elements to the Arctic coastal zone.
    Description: This study was a broad, collaborative effort that would not have been possible without contributions from numerous funding sources, including the National Science Foundation (NSF-0751525, NSF-1736277, NSF-1458305, NSF-1938873, NSF-2048067, NSF-2134865), the NERC-BMBF project CACOON [NE/R012806/1] (UKRI NERC) and BMBF-03F0806A, and an EU Starting Grant (THAWSOME-676982).
    Keywords: Radium isotopes ; Arctic Ocean ; River fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-02-10
    Description: Muography represents a recent and innovative tool for investigating the interior of active volcanoes. However, when dealing with frequently erupting open-vent volcanoes such as Stromboli, any result should take into con- sideration the structural and morphology changes caused by the eruptive activity. This may cause either summit collapses by magma withdrawal, or morphology growth by the accumulations of a fallout from the explosive activity, or more often a combination of both. In this chapter, we present an integration of various techniques, comprising muography and digital elevation model reconstruction, together with GBInSAR ground deformation and volcano seismicity, to reconstruct the geometry of the shallow magma supply system of the volcano and its changes in time. We show how muography can display the interior of the volcano as well as its outer growth, being sensitive to all volume changes that occurred between the framed surface and the detector. This was discovered in Stromboli by comparing digital topography in the interval between 2010 and 2012, when the rapid growth of the volcano summit by the accumulation of ballistic products in the area between the crater zone and the muon detec- tor occurred. This deposit, together with the filling in of the graben-like depression, formed during the 2007 eruption, by fallout during the persistent explosive activity, contributed to generating a remarkable anomaly in the summit area of the volcano visualized by muography. In addition, the shallow feeding system of the volcano was surveyed by GBInSAR and seismicity, which allowed us to reconstruct its path up to a depth of a few hundred meters.
    Description: Published
    Description: 75-91
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Keywords: Stromboli volcano ; Shallow supply system ; Muography of active volcanoes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union, 37(2), pp. e2020PA003953, ISSN: 2572-4517
    Publication Date: 2022-02-15
    Description: Cenozoic climate changes have been linked to tectonic activity and variations in atmospheric CO2 concentrations. Here we present Miocene and Pliocene sensitivity experiments performed with the climate model COSMOS. The experiments contain changes with respect to paleogeography, ocean gateway configuration, and atmospheric CO2 concentrations, as well as a range of vertical mixing coefficients in the ocean. For the Mid-Miocene, we show that the impact of ocean mixing on surface temperature is comparable to the effect of the possible range in reconstructed CO2 concentrations. In combination with stronger vertical mixing, relatively moderate CO2-concentrations of 450 ppmv enable global mean surface, deep-water and meridional temperature characteristics representative of Mid-Miocene Climatic Optimum (MMCO) reconstructions. The Miocene climate shows a reduced meridional temperature gradient and reduced seasonality. In the case of enhanced mixing, surface and deep ocean temperatures show significant warming of up to 5-10°C and an Arctic temperature anomaly of more than 12°C. In the Pliocene simulations, the impact of vertical mixing and CO2 is less important for the deep ocean, which we interpret as a different sensitivity dependence on the background state and mixed layer dynamics. We find a significant reduction in surface albedo and effective emissivity for either a high level of atmospheric CO2 or increased vertical mixing. Our mixing sensitivity experiments provide a warm deep ocean via ocean heat uptake. We propose that the mixing hypothesis can be tested by reconstructions of the thermocline and seasonal paleoclimate data indicating a lower seasonality relative to today.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-10-27
    Description: This paper is not subject to U.S. copyright. The definitive version was published in ten Brink, U. S., Vanacore, E. A., Fielding, E. J., Chaytor, J. D., Lopez-Venegas, A. M., Baldwin, W. E., Foster, D. S., & Andrews, B. D. Mature diffuse tectonic block boundary revealed by the 2020 southwestern Puerto Rico seismic sequence. Tectonics, 41(3), (2022): e2021TC006896, https://doi.org/10.1029/2021TC006896.
    Description: Distributed faulting typically tends to coalesce into one or a few faults with repeated deformation. The progression of clustered medium-sized (≥Mw4.5) earthquakes during the 2020 seismic sequence in southwestern Puerto Rico (SWPR), modeling shoreline subsidence from InSAR, and sub-seafloor mapping by high-resolution seismic reflection profiles, suggest that the 2020 SWPR seismic sequence was distributed across several short intersecting strike-slip and normal faults beneath the insular shelf and upper slope of Guayanilla submarine canyon. Multibeam bathymetry map of the seafloor shows significant erosion and retreat of the shelf edge in the area of seismic activity as well as slope-parallel lineaments and submarine canyon meanders that typically develop over geological time. The T-axis of the moderate earthquakes further matches the extension direction previously measured on post early Pliocene (∼〉3 Ma) faults. We conclude that although similar deformation has likely taken place in this area during recent geologic time, it does not appear to have coalesced during this time. The deformation may represent the southernmost part of a diffuse boundary, the Western Puerto Rico Deformation Boundary, which accommodates differential movement between the Puerto Rico and Hispaniola arc blocks. This differential movement is possibly driven by the differential seismic coupling along the Puerto Rico—Hispaniola subduction zone. We propose that the compositional heterogeneity across the island arc retards the process of focusing the deformation into a single fault. Given the evidence presented here, we should not expect a single large event in this area but similar diffuse sequences in the future.
    Description: 2022-08-08
    Keywords: Rupture of multiple faults ; Intra-arc deformation ; Earthquake-generated submarine canyon ; Anisotropic arc composition ; Caribbean seismic hazard
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49(6), (2022): e2021GL095559, https://doi.org/10.1029/2021GL095559.
    Description: The valuable ecosystem services of salt marshes are spurring marsh restoration projects around the world. However, it is difficult to determine the final vegetated area based on physical drivers. Herein, we use a 3D fully coupled vegetation-hydrodynamic-morphological modeling system to simulate the final vegetation cover and the timescale to reach it under various forcing conditions. Marsh development in our simulations can be divided in three distinctive phases: A preparation phase characterized by sediment accumulation in the absence of vegetation, an encroachment phase in which the vegetated area grows, and an adjustment phase in which the vegetated area remains relatively constant while marsh accretes vertically to compensate for sea level rise. Sediment concentration, settling velocity, sea level rise, and tidal range each comparably affect equilibrium coverage and timescale in different ways. Our simulations show that the Unvegetated-Vegetated Ratio also relates to sediment budget in marsh development under most conditions.
    Description: This study was supported by the Department of the Interior Hurricane Sandy Recovery program (ID G16AC00455), NSF awards 1637630 (PIE LTER) and 1832221 (VCR LTER), and China Scholarship Council.
    Description: 2022-09-16
    Keywords: Marsh restoration ; Land reclamation ; COAWST ; Vegetation dynamics ; Phases of marsh development ; Expectance of marsh coverage
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(10),(2021): e2021JB022050, https://doi.org/10.1029/2021JB022050.
    Description: On-fault earthquake magnitude distributions are calculated for northern Caribbean faults using estimates of fault slip and regional seismicity parameters. Integer programming, a combinatorial optimization method, is used to determine the optimal spatial arrangement of earthquakes sampled from a truncated Gutenberg-Richter distribution that minimizes the global misfit in slip rates on a complex fault system. Slip rates and their uncertainty on major faults are derived from a previously published GPS block model for the region, with fault traces determined from offshore geophysical mapping and previously published onshore studies. The optimal spatial arrangement of the sampled earthquakes is compared with the 500-year history of earthquake observations. Rupture segmentation of the subduction interface along the Hispaniola-Puerto Rico Trench (PRT) fault and seismic coupling on the PRT fault appear to exert the primary control over this spatial arrangement. Introducing a rupture barrier for the Hispaniola-PRT fault northwest of Mona Passage, based on geophysical and seismicity observations, and assigning a low slip rate of 2 mm/yr on the PRT fault are most consistent with historical earthquakes in the region. The addition of low slip-rate secondary faults as well as segmentation of the Hispaniola and Septentrional strike-slip fault improves the consistency with historical seismicity. An important observation from the modeling is that varying the slip rate on the PRT fault and different segmentation scenarios result in significant changes to the optimal magnitude distribution on faults farther away. In general, optimal on-fault magnitude distributions are more complex and inter-dependent than is typically assumed in probabilistic seismic hazard analysis and probabilistic tsunami hazard analysis.
    Description: Funding for this study is from the U.S. Geological Survey Coastal and Marine Hazards and Resources Program.
    Description: 2022-04-11
    Keywords: Northern Caribbean ; Rupture forecast ; Combinatorial optimization ; Integer programming
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Loescher, H., Vargas, R., Mirtl, M., Morris, B., Pauw, J., Yu, X., Kutsch, W., Mabee, P., Tang, J., Ruddell, B., Pulsifer, P., Bäck, J., Zacharias, S., Grant, M., Feig, G., Zheng, L., Waldmann, C., & Genazzio, M. Building a global ecosystem research infrastructure to address global grand challenges for macrosystem ecology. Earth’s Future, 10(5), (2022): e2020EF001696, https://doi.org/10.1029/2020ef001696.
    Description: The development of several large-, “continental”-scale ecosystem research infrastructures over recent decades has provided a unique opportunity in the history of ecological science. The Global Ecosystem Research Infrastructure (GERI) is an integrated network of analogous, but independent, site-based ecosystem research infrastructures (ERI) dedicated to better understand the function and change of indicator ecosystems across global biomes. Bringing together these ERIs, harmonizing their respective data and reducing uncertainties enables broader cross-continental ecological research. It will also enhance the research community capabilities to address current and anticipate future global scale ecological challenges. Moreover, increasing the international capabilities of these ERIs goes beyond their original design intent, and is an unexpected added value of these large national investments. Here, we identify specific global grand challenge areas and research trends to advance the ecological frontiers across continents that can be addressed through the federation of these cross-continental-scale ERIs.
    Description: This manuscript is in part the product of several workshops and ongoing GERI development. The first workshop was the Terrestrial Ecosystem Research Network (TERN) sponsored and entitled: “Towards a Global Ecosystem Observatory”, 5–7 March 2017, University of Queensland, Brisbane Australia. Another workshop was sponsored by Chinese Academy of Sciences (CAS) and entitled: “Global Integrated Research Infrastructure component in Next Generation ILTER”, 17–20 April, 2018, South China Botanical Garden, Zhaoqing, Guangdong Province, China. The National Science Foundation (NSF) supported two workshops. The first was entitled: ‘Building a Global Ecological Understanding’ held at the University of Delaware, Newark Delaware, 3–6 June, 2016 (NSF 1347883) and the second entitled: “Global Environmental Research Infrastructure (GERI) Planning Workshop”, held at NEON HQ, Boulder Colorado, 25–27 June 2019 (NSF 1917180). The authors wish to thank the workshop attendees for their thoughtful contributions. NEON is a project sponsored by the NSF and managed under cooperative support agreement (DBI-1029808) to Battelle.
    Keywords: Environmental research infrastructure ; Macrosystem science ; Interoperability ; Societal benefit ; New capabilities ; Federating infrastructure
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-10-27
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Hegermiller, C. A., Warner, J. C., Olabarrieta, M., Sherwood, C. R., & Kalra, T. S. Modeling of barrier breaching during hurricanes Sandy and Matthew. Journal of Geophysical Research: Earth Surface, 127(3), (2022): e2021JF006307, https://doi.org/10.1029/2021JF006307.
    Description: Physical processes driving barrier island change during storms are important to understand to mitigate coastal hazards and to evaluate conceptual models for barrier evolution. Spatial variations in barrier island topography, landcover characteristics, and nearshore and back-barrier hydrodynamics can yield complex morphological change that requires models of increasing resolution and physical complexity to predict. Using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, we investigated two barrier island breaches that occurred on Fire Island, NY during Hurricane Sandy (2012) and at Matanzas, FL during Hurricane Matthew (2016). The model employed a recently implemented infragravity (IG) wave driver to represent the important effects of IG waves on nearshore water levels and sediment transport. The model simulated breaching and other changes with good skill at both locations, resolving differences in the processes and evolution. The breach simulated at Fire Island was 250 m west of the observed breach, whereas the breach simulated at Matanzas was within 100 m of the observed breach. Implementation of the vegetation module of COAWST to allow three-dimensional drag over dune vegetation at Fire Island improved model skill by decreasing flows across the back-barrier, as opposed to varying bottom roughness that did not positively alter model response. Analysis of breach processes at Matanzas indicated that both far-field and local hydrodynamics influenced breach creation and evolution, including remotely generated waves and surge, but also surge propagation through back-barrier waterways. This work underscores the importance of resolving the complexity of nearshore and back-barrier systems when predicting barrier island change during extreme events.
    Description: C. A. Hegermiller is grateful to the U.S. Geological Survey (USGS) Mendenhall Research Fellowship Program for support. This project was supported by the USGS Coastal and Marine Geology Program and the Office of Naval Research, Increasing the Fidelity of Morphological Storm Impact Predictions Project. M. Olabarrieta acknowledges support from the NSF project OCE-1554892.
    Description: 2022-07-26
    Keywords: Breach ; Barrier island ; Hurricane
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zeigler, S. L., Gutierrez, B. T., Lentz, E. E., Plant, N. G., Sturdivant, E. J., & Doran, K. S. Predicted sea-level rise-driven biogeomorphological changes on Fire Island, New York: implications for people and plovers. Earth’s Future, 10(4), (2022): e2021EF002436, https://doi.org/10.1029/2021EF002436.
    Description: Forecasting biogeomorphological conditions for barrier islands is critical for informing sea-level rise (SLR) planning, including management of coastal development and ecosystems. We combined five probabilistic models to predict SLR-driven changes and their implications on Fire Island, New York, by 2050. We predicted barrier island biogeomorphological conditions, dynamic landcover response, piping plover (Charadrius melodus) habitat availability, and probability of storm overwash under three scenarios of shoreline change (SLC) and compared results to observed 2014/2015 conditions. Scenarios assumed increasing rates of mean SLC from 0 to 4.71 m erosion per year. We observed uncertainty in several morphological predictions (e.g., beach width, dune height), suggesting decreasing confidence that Fire Island will evolve in response to SLR as it has in the past. Where most likely conditions could be determined, models predicted that Fire Island would become flatter, narrower, and more overwash-prone with increasing rates of SLC. Beach ecosystems were predicted to respond dynamically to SLR and migrate with the shoreline, while marshes lost the most area of any landcover type compared to 2014/2015 conditions. Such morphological changes may lead to increased flooding or breaching with coastal storms. However—although modest declines in piping plover habitat were observed with SLC—the dynamic response of beaches, flatter topography, and increased likelihood of overwash suggest storms could promote suitable conditions for nesting piping plovers above what our geomorphology models predict. Therefore, Fire Island may offer a conservation opportunity for coastal species that rely on early successional beach environments if natural overwash processes are encouraged.
    Description: Funding for this work was provided by the U.S. Geological Survey's Coastal and Marine Hazards and Resources Program, with supplemental funding through the Disaster Relief Act.
    Keywords: Sea level rise ; Erosion ; Coastal habitats ; Barrier island ; Shorebirds
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chandanpurkar, H. A., Lee, T., Wang, X., Zhang, H., Fournier, S., Fenty, I., Fukumori, I., Menemenlis, D., Piecuch, C. G., Reager, J. T., Wang, O., & Worden, J. Influence of nonseasonal river discharge on sea surface salinity and height. Journal of Advances in Modeling Earth Systems, 14(2), (2022): e2021MS002715, https://doi.org/10.1029/2021MS002715.
    Description: River discharge influences ocean dynamics and biogeochemistry. Due to the lack of a systematic, up-to-date global measurement network for river discharge, global ocean models typically use seasonal discharge climatology as forcing. This compromises the simulated nonseasonal variation (the deviation from seasonal climatology) of the ocean near river plumes and undermines their usefulness for interdisciplinary research. Recently, a reanalysis-based daily varying global discharge data set was developed, providing the first opportunity to quantify nonseasonal discharge effects on global ocean models. Here we use this data set to force a global ocean model for the 1992–2017 period. We contrast this experiment with another experiment (with identical atmospheric forcings) forced by seasonal climatology from the same discharge data set to isolate nonseasonal discharge effects, focusing on sea surface salinity (SSS) and sea surface height (SSH). Near major river mouths, nonseasonal discharge causes standard deviations in SSS (SSH) of 1.3–3 practical salinity unit (1–2.7 cm). The inclusion of nonseasonal discharge results in notable improvement of model SSS against satellite SSS near most of the tropical-to-midlatitude river mouths and minor improvement of model SSH against satellite or in-situ SSH near some of the river mouths. SSH changes associated with nonseasonal discharge can be explained by salinity effects on halosteric height and estimated accurately through the associated SSS changes. A recent theory predicting river discharge impact on SSH is found to perform reasonably well overall but underestimates the impact on SSH around the global ocean and has limited skill when applied to rivers near the equator and in the Arctic Ocean.
    Description: This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004) with support from the Physical Oceanography (PO) and Modeling, Analysis, and Prediction (MAP) Programs. High-end computing resources for the numerical simulation were provided by the NASA Advanced Supercomputing Division at the Ames Research Center.
    Keywords: River discharge ; Sea surface salinity ; Sea surface height
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in German, C., Baumberger, T., Lilley, M., Lupton, J., Noble, A., Saito, M., Thurber, A., & Blackman, D. Hydrothermal exploration of the southern Chile Rise: sediment‐hosted venting at the Chile Triple Junction. Geochemistry Geophysics Geosystems, 23(3), (2022): e2021GC010317, https://doi.org/10.1029/2021gc010317.
    Description: We report results from a hydrothermal plume survey along the southernmost Chile Rise from the Guamblin Fracture Zone to the Chile Triple Junction (CTJ) encompassing two segments (93 km cumulative length) of intermediate spreading-rate mid-ocean ridge axis. Our approach used in situ water column sensing (CTD, optical clarity, redox disequilibrium) coupled with sampling for shipboard and shore based geochemical analyses (δ3He, CH4, total dissolvable iron (TDFe) and manganese, (TDMn)) to explore for evidence of seafloor hydrothermal venting. Across the entire survey, the only location at which evidence for submarine venting was detected was at the southernmost limit to the survey. There, the source of a dispersing hydrothermal plume was located at 46°16.5’S, 75°47.9’W, coincident with the CTJ itself. The plume exhibits anomalies in both δ3He and dissolved CH4 but no enrichments in TDFe or TDMn beyond what can be attributed to resuspension of sediments covering the seafloor where the ridge intersects the Chile margin. These results are indicative of sediment-hosted venting at the CTJ.
    Description: We acknowledge University of California Ship Funds for their support of that shiptime and the NOAA Ocean Exploration and Research Grant NA08OAR4600757 which supported the research presented here. Finally, we thank two anonymous reviewers whose important contributions helped to improve the final version of this paper. This is PMEL contribution number 5341.
    Keywords: Hydrothermal ; Geochemistry ; Chile Rise ; Chile Triple Junction ; Sediment hosted
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(1), (2022): e2021JC017927, https://doi.org/10.1029/2021JC017927.
    Description: Observations and high-resolution numerical modeling are used to investigate the dynamical processes related to the initiation of an advective Marine Heatwave in the Middle Atlantic Bight of the Northwest Atlantic continental shelf. Both the observations and the model identify two significant cross-shelf intrusions in November 2016 and January 2017, with the latter inducing large-magnitude water mass anomalies across the shelf. Model prognostic fields reveal the importance of the combination of cyclonic eddies or ringlets and upwelling-favorable winds in producing the large-distance cross-shelf penetration and temperature/salinity anomalies. The cyclonic eddies in close proximity to the shelfbreak set up local along-isobath pressure gradients and provide favorable conditions for the intensification of the shelfbreak front, both processes driving cross-isobath intrusions of warm, salty offshore water onto the outer continental shelf. Subsequently, strong and persistent upwelling-favorable winds drive a rapid, bottom intensified cross-shelf penetration in January 2017 composed of the anomalous water mass off the shelfbreak. The along-shelf settings including realistic representation of bathymetric features are essential in the characteristics of the cross-shelf penetration. The results highlight the importance of smaller scale cyclonic eddies and the intricacy of the interplay between multiple processes to drive significant cross-shelf events.
    Description: This work was supported by Woods Hole Oceanographic Institution (WHOI) Independent Research and Development (IR&D) award and National Oceanic and Atmospheric Administration (NOAA) Climate Program Office (CPO) Climate Variability and Predictability (CVP) program under grant NA20OAR4310398. Numerical modeling work was conducted at WHOI High-Performance Computing cluster Poseidon with startup support to Ke Chen.
    Description: 2022-06-08
    Keywords: Drivers of Marine heatwave ; Warm core rings and cyclonic eddies ; Shelfbreak front and frontogenesis ; Pressure gradient setup ; Wind-driven upwelling and bottom intrusion ; Cross-shelf exchange
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49, (2022): e2021GL096530, https://doi.org/10.1029/2021gl096530.
    Description: Water-mass transports in the vast and seemingly quiescent abyssal ocean, basically along topographically-guided pathways, play a pivotal role in the Earth's climate. The pulse of abyssal circulations can be taken with observations at topographic choke points. The Yap-Mariana Junction (YMJ) is the exclusive choke point through which the Lower Circumpolar Deep Water (LCDW) enters the Philippine Sea. Here, we quantify the LCDW transport and its variability based on mooring observations at the YMJ and the Mariana Trench (MT). The LCDW flows northward toward the Philippine Sea as an intensified current on the western side of the YMJ, with maximum mean velocity reaching 7.6 cm/s. The mean LCDW transports through the MT and the YMJ are 2.2 ± 1.0 Sv and 2.1 ± 0.4 Sv, respectively. Reversal flow at autumn in both the YMJ and MT is captured, indicating seasonal variability of the abyssal flow.
    Description: This work was supported by the National Natural Science Foundation of China (Grant no. 91858203, 91958205, 42076027, 41676011), the National Key R&D Program of China (Grant no. 2018YFC0309800), the Global Change and Air–Sea Interaction Project (Grant no. GASI-IPOVAI-01-03, GASI-IPOVAI-01-02).
    Description: 2022-07-28
    Keywords: Abyssal circulation ; Yap-Mariana Junction ; Lower circumpolar deep water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wu, J., Parnell‐Turner, R., Fornari, D., Kurras, G., Berrios‐Rivera, N., Barreyre, T., & McDermott, J. Extent and volume of lava flows erupted at 9°50’N, East Pacific Rise in 2005–2006 from autonomous underwater vehicle surveys. Geochemistry Geophysics Geosystems, 23, (2022): e2021GC010213, https://doi.org/10.1029/2021gc010213.
    Description: Seafloor volcanic eruptions are difficult to directly observe due to lengthy eruption cycles and the remote location of mid-ocean ridges. Volcanic eruptions in 2005–2006 at 9°50′N on the East Pacific Rise have been well documented, but the lava volume and flow extent remain uncertain because of the limited near-bottom bathymetric data. We present near-bottom data collected during 19 autonomous underwater vehicle (AUV) Sentry dives at 9°50′N in 2018, 2019, and 2021. The resulting 1 m-resolution bathymetric grid and 20 cm-resolution sidescan sonar images cover 115 km2, and span the entire area of the 2005–2006 eruptions, including an 8 km2 pre-eruption survey collected with AUV ABE in 2001. Pre- and post-eruption surveys, combined with sidescan sonar images and seismo-acoustic impulsive events recorded during the eruptions, are used to quantify the lava flow extent and to estimate changes in seafloor depth caused by lava emplacement. During the 2005–2006 eruptions, lava flowed up to ∼3 km away from the axial summit trough, covering an area of ∼20.8 km2; ∼50% larger than previously thought. Where pre- and post-eruption surveys overlap, individual flow lobes can be resolved, confirming that lava thickness varies from ∼1 to 10 m, and increases with distance from eruptive fissures. The resulting lava volume estimate indicates that ∼57% of the melt extracted from the axial melt lens probably remained in the subsurface as dikes. These observations provide insights into recharge cycles in the subsurface magma system, and are a baseline for studying future eruptions at the 9°50′N area.
    Description: This project is supported by National Science Foundation grants OCE-1834797, OCE-1949485, OCE-194893, OCE-1949938, and by Scripps Institution of Oceanography's David DeLaCour Endowment Fund.
    Keywords: Submarine volcanism ; Mid-ocean ridges ; Autonomous underwater vehicle ; Eruption cycles ; Seafloor mapping
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(12), (2021): e2021JB022201, https://doi.org/10.1029/2021JB022201.
    Description: Sparse wide-angle seismic profiling supported by coincident reflection imaging has been instrumental for advancing our knowledge about rifted margins. Nevertheless, features of critical importance for understanding rifting processes have been poorly resolved. We derive a high-resolution velocity model by applying full waveform inversion to the dense OETR-2009 wide-angle seismic profile crossing the northeastern Nova Scotian margin. We then create a coincident reflection image by prestack depth migrating the multichannel seismic data. This allows for the first detailed interpretation of the structures related to the final stages of continental breakup and incipient oceanic accretion at the Eastern North America Margin. Our interpretation includes a hyperextended continental domain overlying partially serpentinized mantle, followed by a 10-km-wide domain consisting of a continental block surrounded by layered and bright reflectors indicative of magmatic extrusions. A major fault, representing the continent-ocean boundary, marks a sharp seaward transition to a 16-km-wide domain characterized by smoother basement with chaotic reflectors, where no continental materials are present and a 3-km-thick embryonic oceanic crust overlying partially serpentinized mantle is created by the breakup magmatism. Further seaward, thin oceanic crust overlies the serpentinized mantle suggesting magma-poor oceanic spreading with variable magma supply as determined from variable basement topography, 2–4 km thick volcanic layer, and magnetic anomalies. Our results demonstrate that magmatism played an important role in the lithospheric breakup of the area crossed by the OETR-2009 profile. Considering that the northeastern Nova Scotian margin has been classified as amagmatic, large margin-parallel variations in magma supply likely characterize a single rift segment.
    Description: H. Jian was supported by the Ocean Frontier Institute International Postdoctoral Fellowship at Dalhousie University and NSF grant OCE-2001012.
    Keywords: Rifted continental margin ; Magma-poor rifting ; Breakup magmatism ; Nova Scotian margin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rovira‐Navarro, M., Katz, R., Liao, Y., Wal, W., & Nimmo, F. The tides of Enceladus’ porous core. Journal of Geophysical Research: Planets, 127, (2022): e2021JE007117, https://doi.org/10.1029/2021je007117.
    Description: The inferred density of Enceladus' core, together with evidence of hydrothermal activity within the moon, suggests that the core is porous. Tidal dissipation in an unconsolidated core has been proposed as the main source of Enceladus' geological activity. However, the tidal response of its core has generally been modeled assuming it behaves viscoelastically rather than poroviscoelastically. In this work, we analyze the poroviscoelastic response to better constrain the distribution of tidal dissipation within Enceladus. A poroviscoelastic body has a different tidal response than a viscoelastic one; pressure within the pores alters the stress field and induces a Darcian porous flow. This flow represents an additional pathway for energy dissipation. Using Biot's theory of poroviscoelasticity, we develop a new framework to obtain the tidal response of a spherically symmetric, self-gravitating moon with porous layers and apply it to Enceladus. We show that the boundary conditions at the interface of the core and overlying ocean play a key role in the tidal response. The ocean hinders the development of a large-amplitude Darcian flow, making negligible the Darcian contribution to the dissipation budget. We therefore infer that Enceladus' core can be the source of its geological activity only if it has a low rigidity and a very low viscosity. A future mission to Enceladus could test this hypothesis by measuring the phase lags of tidally induced changes of gravitational potential and surface displacements.
    Description: M. Rovira-Navarro has been financially supported by the Space Research User Support program of the Netherlands Organization for Scientific Research (NWO) under contract number ALW-GO/16–19. F. Nimmo and Y. Liao have been supported by the National Aeronautics and Space Administration (NASA) Solar System Workings (SSW) Program, Grant No. 80NSSC21K0158. R. Katz acknowledges funding from the Leverhulme Trust through a Research Project Grant.
    Keywords: Enceladus ; Tides ; Poroviscoelasticity ; Interior ; Hydrotherma
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(5), (2022): e2021JC018359, https://doi.org/10.1029/2021JC018359.
    Description: Climate change is transforming the Arctic Ocean in unprecedented ways which can be most directly observed in the systematic decline in seasonal ice coverage. From the collection and analysis of particulate and dissolved activities of 210Po and 210Pb from four deepwater superstations, as a part of the US Arctic GEOTRACES cruise during 2015, and in conjunction with previously published data, the temporal and spatial variations in their activities, inventories and residence times are evaluated. The results show that the partitioning of particulate and dissolved phases has changed significantly in the 8 years between 2007 and 2015, while the total 210Po and 210Pb activities have remained relatively unchanged. Observed total 210Po/210Pb activity ratio was less than unity in all deepwater stations, implying disequilibria in the entire water column. From the distribution of total 210Po and 210Pb in the upper 500 m of all major Arctic Basins, the derived scavenging efficiencies decrease as per the following sequence: Makarov Basin 〉 Gakkel Bridge 〉 Canada Basin Nansen Basin ∼ Amundsen Basin 〉 Alpha Ridge, which is the reverse order of the calculated residence times of 210PoT. The scavenging intensities differ between the fully ice-covered, partially ice-covered, and no ice-covered stations, as observed from the differences in the average activities of 210Po and 210Pb. The average settling velocity of particulate matter based on the 210Pb activity is similar to the published values based on 230Th, indicating removal mechanism(s) of Th and Pb is (are) similar.
    Description: This work was supported by National Science Foundation grants (NSF-PLR-1434578, MB; and NSF-OPP-1435376 KM). Mark Baskaran (PI) and Kanchan Maiti were independently funded by NSF.
    Description: 2022-10-06
    Keywords: 210Po ; 210Pb ; Biogeochemical cycles in the Arctic ; Residence time ; Climate change impacts in the Arctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 36(6), (2022): e2022GB007330, https://doi.org/10.1029/2022gb007330.
    Description: Processes controlling dissolved barium (dBa) were investigated along the GEOTRACES GA03 North Atlantic and GP16 Eastern Tropical Pacific transects, which traversed similar physical and biogeochemical provinces. Dissolved Ba concentrations are lowest in surface waters (∼35–50 nmol kg−1) and increase to 70–80 and 140–150 nmol kg−1 in deep waters of the Atlantic and Pacific transects, respectively. Using water mass mixing models, we estimate conservative mixing that accounts for most of dBa variability in both transects. To examine nonconservative processes, particulate excess Ba (pBaxs) formation and dissolution rates were tracked by normalizing particulate excess 230Th activities. Th-normalized pBaxs fluxes, with barite as the likely phase, have subsurface maxima in the top 1,000 m (∼100–200 μmol m−2 year−1 average) in both basins. Barite precipitation depletes dBa within oxygen minimum zones from concentrations predicted by water mass mixing, whereas inputs from continental margins, particle dissolution in the water column, and benthic diffusive flux raise dBa above predications. Average pBaxs burial efficiencies along GA03 and GP16 are ∼37% and 17%–100%, respectively, and do not seem to be predicated on barite saturation indices in the overlying water column. Using published values, we reevaluate the global freshwater dBa river input as 6.6 ± 3.9 Gmol year−1. Estuarine mixing processes may add another 3–13 Gmol year−1. Dissolved Ba inputs from broad shallow continental margins, previously unaccounted for in global marine summaries, are substantial (∼17 Gmol year−1), exceeding terrestrial freshwater inputs. Revising river and shelf dBa inputs may help bring the marine Ba isotope budget more into balance.
    Description: The International GEOTRACES Programme is possible in part thanks to the support from the U.S. National Science Foundation (Grant OCE-1840868) to the Scientific Committee on Oceanic Research (SCOR). This research was supported by the National Science Foundation under Grant No. NSF OCE-0927951, NSF OCE-1137851, NSF OCE-1261214, and NSF OCE-1925503 to A. M. Shiller; NSF OCE-1829563 to R. F. Anderson; NSF OCE-0927064 and NSF OCE-1233688 to R. F. Anderson and M. Q. Fleisher; NSF OCE-0927754 to R. Lawrence Edwards; NSF OCE-1233903 to R. Lawrence Edwards and H. Cheng; NSF OCE-0926860 to L. F. Robinson; NSF OCE-0963026 and NSF OCE-1518110 to P. J. Lam; and NSF OCE-1232814 to B. S. Twining.
    Keywords: Barium ; Excess barium ; Barite ; GEOTRACES ; Th-normalized flux ; Burial efficiency
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Reyes-Macaya, D., Hoogakker, B., Martinez-Mendez, G., Llanillo, P. J., Grasse, P., Mohtadi, M., Mix, A., Leng, M. J., Struck, U., McCorkle, D. C., Troncoso, M., Gayo, E. M., Lange, C. B., Farias, L., Carhuapoma, W., Graco, M., Cornejo-D’Ottone, M., De Pol Holz, R., Fernandez, C., Narvaez, D., Vargas, C. A., García-Araya, F., Hebbeln, D. Isotopic characterization of water masses in the Southeast Pacific Region: paleoceanographic implications. Journal of Geophysical Research: Oceans, 127(1), (2022): e2021JC017525, https://doi.org/10.1029/2021JC017525.
    Description: In this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) in combination with temperature, salinity, oxygen, and nutrient concentrations to characterize the coastal (71°–78°W) and an oceanic (82°–98°W) water masses (SAAW—Subantarctic Surface Water; STW—Subtropical Water; ESSW—Equatorial Subsurface water; AAIW—Antarctic Intermediate Water; PDW—Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used to differentiate between SAAW-STW, SAAW-ESSW, and ESSW-AAIW. δ13CDIC signatures can be used to differentiate between STW-ESSW (oceanic section), SAAW-ESSW, ESSW-AAIW, and AAIW-PDW. Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and geometry of water masses above 1,000 m. Previous paleoceanographic studies using marine sediments from the SEP continental margin used the present-day hydrological oceanic transect to compare against, as the coastal section was not sufficiently characterized. We suggest that our new results of the coastal section should be used for past characterizations of the SEP water masses that are usually based on continental margin sediment samples.
    Description: R/V Sonne cruises (SO102, SO211 ad SO245) were financed by the German Federal Ministry of Education and Research projects #03G0102A, #03G0211A and #03G0245A. SO261 cruise was funded by the HADES-ERC Advanced Grant (“Benthic diagenesis and microbiology of hadal trenches” Grant agreement No. 669947) awarded to R. N. Glud (SDU, Denmark). SO245 cruise recived contributions from the Max Planck Society (Germany), the German State of Lower Saxony, the National Environmental Research Council of Great Britain and the Science Foundation of Ireland. R/V Meteor cruise M93 was financed by the Sonderforschungsbereich 754 “Climate-Biogeochemistry Interactions in the Tropical Ocean” (www.sfb754.de), which is supported by the Deutsche Forschungsgemeinschaft. “Expedición TAITAO” was financed by the grant “Concurso Nacional de Asignación de Tiempo de Buque ASG-61 Cabo de Hornos” AUB180003, FONDECyT grants 11161091 (DN), 1180954 (CF), and the COPAS Sur-Austral Center (CONICYT PIA APOYO CCTE AFB170006). Sampling at Time-Series station 18 off Concepción during 2015 was funded by several FONDECYT/ANID grants from researchers at the Department of Oceanography and Research Line 5 of COPAS Sur-Austral (UdeC). ANID—Chile National Competition for ship time (AUB 150006/12806) financed the expedition LowpHOX organized by the Millennium Institute of Oceanography (IMO). The expedition Crio1218 was financed by the PPR 137 titled “Proyecto de Estudio Integrado del Afloramiento Costero Frente a Perú" and sponsored by IMARPE-Perú. Additional funding was provided by the ANID—Millennium Science Initiative Program—NCN19_153 (Millennium Nucleus UPWELL), ANID/FONDAP (CR)2 15110009 (LF and EMG), FONDECYT Grant 1210171 (CAV), ANID/FONDAP IDEAL 15150003 (CBL), and the Millennium Institute of Oceanography (IMO, ICN12_019). Dharma A. Reyes-Macaya was supported by Becas Chile (17342817-0), DAAD (57144001) and FARGO project (FAte of ocean oxygenation in a waRminG wOrld, UKRI).
    Keywords: Oxygen and deuterium stable isotopes in seawater ; Carbon stable isotopes in dissolved inorganic carbon ; Southeast Pacific ; Water mass distribution ; Paleoceanography proxies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liao, F., Liang, X., Li, Y., & Spall, M. Hidden upwelling systems associated with major western boundary currents. Journal of Geophysical Research: Oceans. 127, (2022): e2021JC017649, https://doi.org/10.1029/2021jc017649.
    Description: Western boundary currents (WBCs) play an essential role in regulating global climate. In contrast to their widely examined horizontal motions, less attention has been paid to vertical motions associated with WBCs. Here, we examine vertical motions associated with the major WBCs by analyzing vertical velocity from five ocean synthesis products and one eddy-resolving ocean simulation. These data reveal robust and intense subsurface upwelling systems, which are primarily along isopycnal surfaces, in five major subtropical WBC systems. These upwelling systems are part of basin-scale overturning circulations and are likely driven by meridional pressure gradients along the western boundary. Globally, the WBC upwelling contributes significantly to the vertical transport of water mass and ocean properties and is an essential yet overlooked branch of the global ocean circulation. In addition, the WBC upwelling intersects the oceanic euphotic and mixed layers, and thus likely plays an important role in ocean biological and chemical processes by transporting nutrients, carbon and other tracers vertically inside the ocean. This study calls for more research into the dynamics of the WBC upwelling and their role in the ocean and climate systems.
    Description: X. Liang is supported by the National Science Foundation through Grants OCE-2021274, OCE-2122507, and the Alfred P. Sloan Foundation through Grant FG-2019-12536. M. Spall is supported through the National Science Foundation Grants OCE-1947290 and OCE-2122633.
    Keywords: Western boundary current ; Upwelling ; Overturning circulation ; Ocean vertical transport ; Ocean synthesis products ; Ocean vertical velocity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-10-19
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 37(1), (2022): e020PA004137, https://doi.org/10.1029/2020PA004137.
    Description: Reconstructions of aeolian dust flux to West African margin sediments can be used to explore changing atmospheric circulation and hydroclimate over North Africa on millennial to orbital timescales. Here, we extend West African margin dust flux records back to 37 ka in a transect of sites from 19° to 27°N, and back to 67 ka at Ocean Drilling Program (ODP) Hole 658C, in order to explore the interplay of orbital and high-latitude forcings on North African climate and make quantitative estimates of dust flux during the core of the Last Glacial Maximum (LGM). The ODP 658C record shows a Green Sahara interval from 60 to 50 ka during a time of high Northern Hemisphere summer insolation, with dust fluxes similar to levels during the early Holocene African Humid Period, and an abrupt peak in flux during Heinrich event 5a (H5a). Dust fluxes increase from 50 to 35 ka while the high-latitude Northern Hemisphere cools, with peaks in dust flux associated with North Atlantic cool events. From 35 ka through the LGM dust deposition decreases in all cores, and little response is observed to low-latitude insolation changes. Dust fluxes at sites from 21° to 27°N were near late Holocene levels during the LGM time slice, suggesting a more muted LGM response than observed from mid-latitude dust sources. Records along the northwest African margin suggest important differences in wind responses during different stadials, with maximum dust flux anomalies centered south of 20°N during H1 and north of 20°N during the Younger Dryas.
    Description: This research was supported by NSF #OCE-1103262 to L. Bradtmiller, NSF #OCE-1030784 to D. McGee, P. deMenocal, and G. Winckler, and by internal grants from Macalester College and MIT.
    Description: 2022-06-07
    Keywords: North Africa ; Dust flux ; Aeolian dust ; Green Sahara ; Stadials
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-10-19
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhou, P., Stockli, D. F., Ireland, T., Murray, R. W., & Clift, P. D. Zircon U-Pb age constraints on NW Himalayan exhumation from the Laxmi Basin, Arabian Sea. Geochemistry Geophysics Geosystems, 23(1), (2022): e2021GC010158, https://doi.org/10.1029/2021GC010158.
    Description: The Indus Fan, located in the Arabian Sea, contains the bulk of the sediment eroded from the Western Himalaya and Karakoram. Scientific drilling in the Laxmi Basin by the International Ocean Discovery Program recovered a discontinuous erosional record for the Indus River drainage dating back to at least 9.8 Ma, and with a single sample from 15.6 Ma. We dated detrital zircon grains by U-Pb geochronology to reconstruct how erosion patterns changed through time. Long-term increases in detrital zircon U-Pb components of 750–1,200 and 1,500–2,300 Ma record increasing preferential erosion of the Himalaya relative to the Karakoram between 8.3–7.0 and 5.9–5.7 Ma. The average contribution of Karakoram-derived sediment to the Indus Fan fell from 70% of the total at 8.3–7.0 Ma to 35% between 5.9 and 5.7 Ma. An increase in the contribution of 1,500–2,300 Ma zircons starting between 2.5 and 1.6 Ma indicates significant unroofing of the Inner Lesser Himalaya (ILH) by that time. The trend in zircon age spectra is consistent with bulk sediment Nd isotope data. The initial change in spatial erosion patterns at 7.0–5.9 Ma occurred during a time of drying climate in the foreland. The increase in ILH erosion postdated the onset of dry-wet glacial-interglacial cycles suggesting some role for climate control. However, erosion driven by rising topography in response to formation of the ILH thrust duplex, especially during the Pliocene, also played an important role, while the influence of the Nanga Parbat Massif to the total sediment flux was modest.
    Description: This work was partially funded by a grant from the USSSP, as well as additional funding from the Charles T. McCord Chair in petroleum geology at LSU, and the Chevron (Gulf) Centennial professorship and the UTChron Laboratory at the University of Texas.
    Keywords: Erosion ; Zircon ; Monsoon ; Himalaya ; Provenance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-10-19
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chase, A. P., Boss, E. S., Haentjens, N., Culhane, E., Roesler, C., & Karp-Boss, L. Plankton imagery data inform satellite-based estimates of diatom carbon. Geophysical Research Letters, 49(13), (2022): e2022GL098076, https://doi.org/10.1029/2022GL098076.
    Description: Estimating the biomass of phytoplankton communities via remote sensing is a key requirement for understanding global ocean ecosystems. Of particular interest is the carbon associated with diatoms given their unequivocal ecological and biogeochemical roles. Satellite-based algorithms often rely on accessory pigment proxies to define diatom biomass, despite a lack of validation against independent diatom biomass measurements. We used imaging-in-flow cytometry to quantify diatom carbon in the western North Atlantic, and compared results to those obtained from accessory pigment-based approximations. Based on this analysis, we offer a new empirical formula to estimate diatom carbon concentrations from chlorophyll a. Additionally, we developed a neural network model in which we integrated chlorophyll a and environmental information to estimate diatom carbon distributions in the western North Atlantic. The potential for improving satellite-based diatom carbon estimates by integrating environmental information into a model, compared to models that are based solely on chlorophyll a, is discussed.
    Description: Funding for this work was provided by NASA grants #NNX15AE67G and #80NSSC20M0202. A. Chase is supported by a Washington Research Foundation Postdoctoral Fellowship.
    Keywords: Diatoms ; Carbon ; Remote sensing ; Pigments ; Cell imagery
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(4), (2022): e2021JC018246, https://doi.org/10.1029/2021jc018246.
    Description: Storm surge barriers are increasingly being considered as risk mitigation measures for coastal population centers. During non-storm periods, permanent barrier infrastructure reduces the flow cross-sectional area and affects tidal exchange. Effects of barrier structures on estuarine tidal and salinity dynamics have not been extensively examined, particularly for partially mixed estuaries. A nested, high-resolution model is used to characterize impacts of a potential storm surge barrier near the mouth of the Hudson River estuary. Maximum tidal velocities through barrier openings are more than double those in the base case. Landward of the barrier, tidal amplitude decreases on average by about 6% due to increased drag. The drag coefficient with the barrier is about 5 times greater than the base case due primarily to form drag from flow separation at barrier structures rather than increased bottom friction. The form drag scales with barrier geometry similar to previous studies of flow around headlands. Tidal water levels are reduced particularly during spring tides, such that marsh inundation frequency is reduced up to 25%. Strong tidal velocities through barrier openings enhance salinity mixing locally, but overall mixing in the estuary decreases due to reduced tidal velocities. Correspondingly, stratification decreases near the barrier and increases landward in the estuary. The salinity intrusion length increases by 5%–15% depending on discharge due to the decreased mixing and increased exchange flow. Exchange flow increases near the barrier due reflux into the lower layer with the increased mixing, which has the potential to increase estuarine residence times.
    Description: Funding from Hudson Research Foundation (Award #003/19A).
    Description: 2022-10-11
    Keywords: Storm surge barrier ; Form drag ; Mixing ; Stratification ; Exchange flow ; Salinity intrusion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(10), (2021): e2021JC017537, https://doi.org/10.1029/2021JC017537.
    Description: Mixed-layer dynamics exert a first order control on nutrient and light availability for phytoplankton. In this study, we examine the influence of mixed-layer dynamics on net community production (NCP) in the Southern Ocean on intra-seasonal, seasonal, interannual, and decadal timescales, using biogeochemical Argo floats and satellite-derived NCP estimates during the period from 1997 to 2020. On intraseasonal timescales, the shoaling of the mixed layer is more likely to enhance NCP in austral spring and winter, suggesting an alleviation of light limitation. As expected, NCP generally increases with light availability on seasonal timescales. On interannual timescales, NCP is correlated with mixed layer depth (MLD) and mixed-layer-averaged photosynthetically active radiation (PAR) in austral spring and winter, especially in regions with deeper mixed layers. Though recent studies have argued that winter MLD controls the subsequent growing season's iron and light availability, the limited number of Argo float observations contemporaneous with our satellite observations do not show a significant correlation between NCP and the previous-winter's MLD on interannual timescales. Over the 1997–2020 period, we observe regional trends in NCP (e.g., increasing around S. America), but no trend for the entire Southern Ocean. Overall, our results show that the dependence of NCP on MLD is a complex function of timescales.
    Description: Work was supported by NSF OPP-1043339 to N.Cassar and NASA NNX13AC94G to M. S. Lozier. Z. Li was supported by a NASA Earth and Space Science Fellowship (Grant No. NNX13AN85H) and the Postdoctoral Scholarship Program at Woods Hole Oceanographic Institution.
    Description: 2022-03-21
    Keywords: Mixed layer depth ; Net community production ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(12), (2021): e2021JC017989, https://doi.org/10.1029/2021JC017989.
    Description: Gulf Stream warm-core rings (WCRs) impinging onto the Mid-Atlantic Bight (MAB) shelf edge can induce substantial water exchange between the shelf and slope seas. Combining satellite imagery and idealized ocean models, this study investigates the long-neglected influence of submarine canyons on the WCR impingement process. Satellite images show onshore intrusion of the WCR water concentrated near the MAB shelf-break canyons, indicating canyon-induced enhancement of cross-shelf exchange. Model simulations of the ring-canyon interaction qualitatively reproduce the observed pattern and show greatly enhanced vertical motions and cross-shelf transport in a canyon. The ring-induced transient flow in a canyon resolved by the model is consistent with the three-dimensional canyon circulation driven by ambient along-slope steady flows as depicted in the literature. Cross-isobath flows occur over both canyon slopes with a strong upwelling onshore flow over the slope upstream to the coastal-trapped wave propagation (the upwave slope) and a weak downwelling offshore flow over the downwave slope. To conserve potential vorticity, a subsurface-intensified cyclonic eddy is formed inside the canyon, which interacts with the sloping bottom and enhances the upwelling onshore flow over the upwave slope. The upwelled deep ring water is transported either back offshore by the ring-edge current on the upwave side of the canyon or across the canyon onto the downwave shelf forming a localized bulge pattern. While the former is an ephemeral onshore transport process, the latter represents a more sustained onshore transport of the ring water, both of which have major implication for ecosystem dynamics at the shelf edge.
    Description: XL was supported by the China Scholarship Council; ZR was supported by the National Key Research and Development Program of China (2016YFC1402000). This work was also support by the WHOI-OUC Collaborative Initiative Program.
    Description: 2022-06-13
    Keywords: Warm-core ring ; Submarine canyon ; Topographic influence ; Cross-shelf exchange ; Upwelling ; Eddy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zippel, S. F., Farrar, J. T., Zappa, C. J., & Plueddemann, A. J. Parsing the kinetic energy budget of the ocean surface mixed layer. Geophysical Research Letters, 49(2), (2022): 2021GL095920, https://doi.org/10.1029/2021GL095920.
    Description: The total rate of work done on the ocean by the wind is of considerable interest for understanding global energy balances, as the energy from the wind drives ocean currents, grows surface waves, and forces vertical mixing. A large but unknown fraction of this atmospheric energy is dissipated by turbulence in the upper ocean. The focus of this work is twofold. First, we describe a framework for evaluating the vertically integrated turbulent kinetic energy (TKE) equation using measurable quantities from a surface mooring, showing the connection to the atmospheric, mean oceanic, and wave energy. Second, we use this framework to evaluate turbulent energetics in the mixed layer using 10 months of mooring data. This evaluation is made possible by recent advances in estimating TKE dissipation rates from long-enduring moorings. We find that surface fluxes are balanced by TKE dissipation rates in the mixed layer to within a factor of two.
    Description: This work was funded by NSF Award No. 2023 020, and by NASA as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS), supporting field work for SPURS-1 (NASA Grant No. NNX11AE84G), and for analysis (NASA Grant No. 80NSSC18K1494), and as part of SASSIE (NASA Grant No. 80NSSC21K0832). This work was also funded by NSF through Grant Award Nos. 1756 839, 2049546, and by ONR through Grant N000141712880 (MISO-BoB).
    Keywords: Air/sea interaction ; Turbulence ; Mixed layer ; Wind work ; Boundary layer ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baranes, H., Woodruff, J., Geyer, W., Yellen, B., Richardson, J. & Griswold, F. Sources, mechanisms, and timescales of sediment delivery to a New England salt marsh. Journal of Geophysical Research: Earth Surface, 127, (2022): e2021JF006478, https://doi.org/10.1029/2021jf006478.
    Description: he availability and delivery of an external clastic sediment source is a key factor in determining salt marsh resilience to future sea level rise. However, information on sources, mechanisms, and timescales of sediment delivery are lacking, particularly for wave-protected mesotidal estuaries. Here we show that marine sediment mobilized and delivered during coastal storms is a primary source to the North and South Rivers, a mesotidal bar-built estuary in a small river system impacted by frequent, moderate-intensity storms that is typical to New England (United States). On the marsh platform, deposition rates, clastic content, and dilution of fluvially-sourced contaminated sediment by marine material all increase down-estuary toward the inlet, consistent with a predominantly marine-derived sediment source. Marsh clastic deposition rates are also highest in the storm season. We observe that periods of elevated turbidity in channels and over the marsh are concurrent with storm surge and high wave activity offshore, rather than with high river discharge. Flood tide turbidity also exceeds ebb tide turbidity during storm events. Timescales of storm-driven marine sediment delivery range from 2.5 days to 2 weeks, depending on location within the estuary; therefore the phasing of storm surge and waves with the spring-neap cycle determines how effectively post-event suspended sediment is delivered to the marsh platform. This study reveals that sediment supply and the associated resilience of New England mesotidal salt marshes involves the interplay of coastal and estuarine processes, underscoring the importance of looking both up- and downstream to identify key drivers of environmental change.
    Description: The project described in this publication was in part supported by Grant or Cooperative Agreement No. G20AC00071 from the U.S. Geological Survey and a Department of Interior Northeast Climate Adaptation Science Center graduate fellowship awarded to H.E.B (G12AC00001).
    Keywords: Salt marsh ; Sediment ; Estuary ; Tides ; Massachusetts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(5), (2022): e2021JC018222, https://doi.org/10.1029/2021jc018222.
    Description: Mixing processes in the upper ocean play a key role in transferring heat, momentum, and matter in the ocean. These mixing processes are significantly enhanced by wave-driven Langmuir turbulence (LT). Based on a paired analysis of observations and simulations, this study investigates wind fetch and direction effects on LT at a coastal site south of the island Martha’s Vineyard (MA, USA). Our results demonstrate that LT is strongly influenced by wind fetch and direction in coastal oceans, both of which contribute to controlling turbulent coastal transport processes. For northerly offshore winds, land limits the wind fetch and wave development, whereas southerly winds are associated with practically infinite fetch. Observed and simulated two-dimensional wave height spectra reveal persistent southerly swell and substantially more developed wind-driven waves from the south. For oblique offshore winds, waves develop more strongly in the alongshore direction with less limited fetch, resulting in significant wind and wave misalignments. Observations of coherent near-surface crosswind velocities indicate that LT is only present for sufficiently developed waves. The fetch-limited northerly winds inhibit wave developments and the formation of LT. In addition to limited fetch, strong wind–wave misalignments prevent LT development. Although energetic and persistent, swell waves do not substantially influence LT activity during the observation period because these relatively long swell waves are associated with small Stokes drift shear. These observational results agree well with turbulence-resolving large eddy simulations (LESs) based on the wave-averaged Navier–Stokes equation, validating the LES approach to coastal LT in the complex wind and wave conditions.
    Description: We acknowledge the support of National Science Foundation grant OCE-1634578 for funding this work. The Office of Naval Research funded the CBLAST-low experiment. This research was supported in part through the use of Information Technologies (IT) resources at the University of Delaware, specifically the high-performance computing resources.
    Description: 2022-10-20
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Opher, J., Brearley, J., Dye, S., Pickart, R., Renfrew, I., Harden, B., & Meredith, M. The annual salinity cycle of the Denmark Strait Overflow. Journal of Geophysical Research: Oceans, 127(4), (2022): e2021JC018139, https://doi.org/10.1029/2021jc018139.
    Description: The Denmark Strait Overflow (DSO) is an important source of dense water input to the deep limb of the Atlantic Meridional Overturning Circulation (AMOC). It is fed by separate currents from the north that advect dense water masses formed in the Nordic Seas and Arctic Ocean which then converge at Denmark Strait. Here we identify an annual salinity cycle of the DSO, characterized by freshening in winter and spring. The freshening is linked to freshening of the Shelfbreak East Greenland Current in the Blosseville Basin north of the Denmark Strait. We demonstrate that the East Greenland Current advects fresh pycnocline water above the recirculating Atlantic Water, which forms a low salinity lid for the overflow in Denmark Strait and in the Irminger Basin. This concept is supported by intensified freshening of the DSO in lighter density classes on the Greenland side of the overflow. The salinity of the DSO in the Irminger Basin is significantly correlated with northerly/northeasterly winds in the Blosseville Basin at a lag of 3–4 months, consistent with estimated transit times. This suggests that wind driven variability of DSO source water exerts an important influence on the salinity variability of the downstream DSO, and hence the composition of the deep limb of the AMOC.
    Description: This research was funded by: NERC EnvEast DTP studentship NE/L002582 (JO) and Cefas Seedcorn DP371 (JO, SRD); as well as by NERC, by AFIS (NE/N009754/1) (IR), JAB is funded by NE/L011166/1, ORCHESTRA (NE/N018095/1) and ENCORE (NE/V013254/1) and RP is funded by the US National Science Foundation grants OCE-1756361 and OCE-1558742. Cefas work on the Angmagssallik array was supported by multiple international partners including NSF, NOAA-CORC-ARCHES, WHOI-OCCI, European Community's fifth & seventh framework programme under grants ASOF-W (contract EVK2-CT-2002-00,149) & No. GA212643 (THOR: “Thermohaline Overturning—at Risk”, 2008–2012) and from UK Department for Environment, Food and Rural Affairs (DEFRA) including A1222, SD0440 & ME5102.
    Keywords: Overflow ; Salinity ; Seasonality ; Fresh lid ; Advection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Whitmore, L., Shiller, A., Horner, T., Xiang, Y., Auro, M., Bauch, D., Dehairs, F., Lam, P., Li, J., Maldonado, M., Mears, C., Newton, R., Pasqualini, A., Planquette, H., Rember, R., & Thomas, H. Strong margin influence on the Arctic Ocean Barium Cycle revealed by pan‐Arctic synthesis. Journal of Geophysical Research: Oceans, 127(4), (2022): e2021JC017417, https://doi.org/10.1029/2021jc017417.
    Description: Early studies revealed relationships between barium (Ba), particulate organic carbon and silicate, suggesting applications for Ba as a paleoproductivity tracer and as a tracer of modern ocean circulation. But, what controls the distribution of barium (Ba) in the oceans? Here, we investigated the Arctic Ocean Ba cycle through a one-of-a-kind data set containing dissolved (dBa), particulate (pBa), and stable isotope Ba ratio (δ138Ba) data from four Arctic GEOTRACES expeditions conducted in 2015. We hypothesized that margins would be a substantial source of Ba to the Arctic Ocean water column. The dBa, pBa, and δ138Ba distributions all suggest significant modification of inflowing Pacific seawater over the shelves, and the dBa mass balance implies that ∼50% of the dBa inventory (upper 500 m of the Arctic water column) was supplied by nonconservative inputs. Calculated areal dBa fluxes are up to 10 μmol m−2 day−1 on the margin, which is comparable to fluxes described in other regions. Applying this approach to dBa data from the 1994 Arctic Ocean Survey yields similar results. The Canadian Arctic Archipelago did not appear to have a similar margin source; rather, the dBa distribution in this section is consistent with mixing of Arctic Ocean-derived waters and Baffin Bay-derived waters. Although we lack enough information to identify the specifics of the shelf sediment Ba source, we suspect that a sedimentary remineralization and terrigenous sources (e.g., submarine groundwater discharge or fluvial particles) are contributors.
    Description: This research was supported by the National Science Foundation [OCE-1434312 (AMS), OCE-1436666 (RN), OCE-1535854 (PL), OCE-1736949, OCE-2023456 (TJH), and OCE-1829563 (R. Anderson for open access support)], Natural Sciences and Engineering Research Council of Canada (NSERC)-Climate Change and Atmospheric Research (CCAR) Program (MTM), and LEFE-CYBER EXPATE (HP). HT acknowledges support by the Canadian GEOTRACES via NSERC-CCAR and the German Academic Exchange Service (DAAD): MOPGA-GRI (Make Our Planet Great Again—Research Initiative) sponsored by BMBF (Federal German Ministry of Education and Research; Grant No. 57429828).
    Keywords: GEOTRACES ; Barium isotopes ; Geochemical cycles ; Climate ; Continental shelves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Peña‐Molino, B., Sloyan, B., Nikurashin, M., Richet, O., & Wijffels, S. Revisiting the seasonal cycle of the Timor throughflow: impacts of winds, waves and eddies. Journal of Geophysical Research: Oceans, 127, (2022): e2021JC018133, https://doi.org/10.1029/2021jc018133.
    Description: The tropical Pacific and Indian Oceans are connected via a complex system of currents known as the Indonesian Throughflow (ITF). More than 30% of the variability in the ITF is linked to the seasonal cycle, influenced by the Monsoon winds. Despite previous efforts, a detailed knowledge of the ITF response to the components of the seasonal forcing is still lacking. Here, we describe the seasonal cycle of the ITF based on new observations of velocity and properties in Timor Passage, satellite altimetry and a high-resolution regional model. These new observations reveal a complex mean and seasonally varying flow field. The amplitude of the seasonal cycle in volume transport is approximately 6 Sv. The timing of the seasonal cycle, with semi-annual maxima (minima) in May and December (February and September), is controlled by the flow below 600 m associated with semi-annual Kelvin waves. The transport of thermocline waters (〈300 m) is less variable than the deep flow but larger in magnitude. This top layer is modulated remotely by cycles of divergence in the Banda Sea, and locally through Ekman transport, coastal upwelling, and non-linearities of the flow. The latter manifests through the formation of eddies that reduce the throughflow during the Southeast Monsoon, when is expected to be maximum. While the reduction in transport associated with the eddies is small, its impact on heat transport is large. These non-linear dynamics develop over small scales (〈10 km), and without high enough resolution, both observations and models will fail to capture them adequately.
    Description: B. Peña-Molino, B. M. Sloyan, M. Nikurashin, and O. Richet were supported by the Centre for Southern Hemisphere Oceans Research (CSHOR). CSHOR is a joint research Centre for Southern Hemisphere Ocean Research between QNLM and CSIRO. S. E. Wijffels was supported by the US National Science Foundation Grant No. OCE-1851333.
    Keywords: Indonesian Throughflow ; Timor Passage ; Seasonal cycle ; Moorings ; Transport ; Eddies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(5), (2022): e2021JC018056, https://doi.org/10.1029/2021jc018056.
    Description: As Arctic sea ice declines, wind energy has increasing access to the upper ocean, with potential consequences for ocean mixing, stratification, and turbulent heat fluxes. Here, we investigate the relationships between internal wave energy, turbulent dissipation, and ice concentration and draft using mooring data collected in the Beaufort Sea during 2003–2018. We focus on the 50–300 m depth range, using velocity and CTD records to estimate near-inertial shear and energy, a finescale parameterization to infer turbulent dissipation rates, and ice draft observations to characterize the ice cover. All quantities varied widely on monthly and interannual timescales. Seasonally, near-inertial energy increased when ice concentration and ice draft were low, but shear and dissipation did not. We show that this apparent contradiction occurred due to the vertical scales of internal wave energy, with open water associated with larger vertical scales. These larger vertical scale motions are associated with less shear, and tend to result in less dissipation. This relationship led to a seasonality in the correlation between shear and energy. This correlation was largest in the spring beneath full ice cover and smallest in the summer and fall when the ice had deteriorated. When considering interannually averaged properties, the year-to-year variability and the short ice-free season currently obscure any potential trend. Implications for the future seasonal and interannual evolution of the Arctic Ocean and sea ice cover are discussed.
    Description: This work was supported by the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. S. T. Cole was supported by Office of Naval Research grant N00014-16-1-2381.
    Description: 2022-10-14
    Keywords: Arctic ; Internal waves ; Mixing ; Sea ice ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fendrock, M., Condron, A., & McGee, D. Modeling iceberg longevity and distribution during Heinrich Events. Paleoceanography and Paleoclimatology, 37(6), (2022): e2021PA004347, https://doi.org/10.1029/2021pa004347.
    Description: During the last glacial period (120–12 ka), the Laurentide ice sheet discharged large numbers of icebergs into the North Atlantic. These icebergs carried sediments that were dropped as the icebergs melted, leaving a record of past iceberg activity on the floor of the subpolar North Atlantic. Periods of significant iceberg discharge and increased ice-rafted debris (IRD) deposition, are known as Heinrich Events. These events coincide with global climate change, and the melt from the icebergs involved is frequently hypothesized to have contributed to these changes in climate by adding a significant volume of cold, fresh water to the North Atlantic. Using an iceberg model coupled with the Massachusetts Institute of Technology Global Circulation Model numerical circulation model, we explore the various factors controlling iceberg drift and rates of melt that influence the spatial patterns of IRD deposition during Heinrich Events. In addition to clarifying the influence of sea surface temperature and wind on the path of an armada of icebergs, we demonstrate that the same volume of ice can produce very different patterns of iceberg drift simply by altering the size of icebergs involved. We note also a significant difference in the seasonal locations of icebergs, influenced primarily by the changing winds, and show that the spatial patterns of IRD for Heinrich Event 1 most closely corresponds to where icebergs are located during the summer months. Consistent with proxy evidence, the ocean must be several degrees colder than temperatures estimated for the Last Glacial Maximum in order for icebergs to travel the distance implied by Heinrich Layers.
    Keywords: Heinrich Event ; Iceberg ; Modeling ; Ice rafted debris ; Paleoclimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Davila, X., Gebbie, G., Brakstad, A., Lauvset, S. K., McDonagh, E. L., Schwinger, J., & Olsen, A. How Is the ocean anthropogenic carbon reservoir filled? Global Biogeochemical Cycles, 36(5), (2022): e2021GB007055, https://doi.org/10.1029/2021GB007055.
    Description: About a quarter of the total anthropogenic CO2 emissions during the industrial era has been absorbed by the ocean. The rate limiting step for this uptake is the transport of the anthropogenic carbon (Cant) from the ocean mixed layer where it is absorbed to the interior ocean where it is stored. While it is generally known that deep water formation sites are important for vertical carbon transport, the exact magnitude of the fluxes across the base of the mixed layer in different regions is uncertain. Here, we determine where, when, and how much Cant has been injected across the mixed-layer base and into the interior ocean since the start of the industrialized era. We do this by combining a transport matrix derived from observations with a time-evolving boundary condition obtained from already published estimates of ocean Cant. Our results show that most of the Cant stored below the mixed layer are injected in the subtropics (40.1%) and the Southern Ocean (36.0%), while the Subpolar North Atlantic has the largest fluxes. The Subpolar North Atlantic is also the most important region for injecting Cant into the deep ocean with 81.6% of the Cant reaching depths greater than 1,000 m. The subtropics, on the other hand, have been the most efficient in transporting Cant across the mixed-layer base per volume of water ventilated. This study shows how the oceanic Cant uptake relies on vertical transports in a few oceanic regions and sheds light on the pathways that fill the ocean Cant reservoir.
    Description: X. Davila was supported by a PhD research fellowship from the University of Bergen. G. Gebbie was supported by U.S. NSF Grant 88075300. A. Brakstad was supported by the Trond Mohn Foundation under grant agreement BFS2016REK01. E. L. McDonagh was supported by UKRI grants Atlantic Biogeochemical fluxes (ref no. NE/M005046/2) and TICTOC:Transient tracer-based Investigation of Circulation and Thermal Ocean Change (ref no. NE/P019293/2). A. Olsen and S. K. Lauvset appreciate support from the Research Council of Norway (ICOS-Norway, project number 245972). J. Schwinger acknowledges support by the Research Council of Norway through project INES (project number 270061). Supercomputer time and storage resources were provided by the The Norwegian e-infrastructure for Research Education (UNINETT Sigma2, projects nn2980k and ns2980k).
    Keywords: Anthropogenic carbon ; Transport matrix ; Mixed-layer ; Observations ; Fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(6), (2022): e2021JC017307, https://doi.org/10.1029/2021jc017307.
    Description: This study examines the spatial and temporal variability of eddy kinetic energy over the Northeast Shelf using observations of surface currents from a unique array of six high frequency radar systems. Collected during summer and winter conditions over three consecutive years, the horizontal scales present were examined in the context of local wind and hydrographic variability, which were sampled concurrently from moorings and autonomous surface vehicles. While area-averaged mean kinetic energy at the surface was tightly coupled to wind forcing, eddy kinetic energy was not, and was lower in magnitude in winter than summer in all areas. Kinetic energy wavenumber spectral slopes were generally near k−5/3, but varied seasonally, spatially, and between years. In contrast, wavenumber spectra of surface temperature and salinity along repeat transect lines had sharp k−3 spectral slopes with little seasonal or inter-annual variability. Radar-based estimates of spectral kinetic energy fluxes revealed a mean transition scale of energy near 18 km during stratified months, but suggested much longer scales during winter. Overall, eddy kinetic energy was unrelated to local winds, but the up- or down-scale flux of kinetic energy was tied to wind events and, more weakly, to local density gradients.
    Description: This analysis was supported by NSF grants OCE-1657896 and OCE-1736930 to Kirincich, OCE-1736709 to Flament, and OCE-1736587 to Futch. Flament is also supported by NOAAs Integrated Ocean Observing System through award NA11NOS0120039.
    Description: 2023-11-21
    Keywords: Coastal circulation ; Eddy kinetic energy ; HF radar ; Mid atlantic bight ; Sub-mesoscale ; Energy cascade
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hage, S., Galy, V., Cartigny, M., Heerema, C., Heijnen, M., Acikalin, S., Clare, M., Giesbrecht, I., Gröcke, D., Hendry, A., Hilton, R., Hubbard, S., Hunt, J., Lintern, D., McGhee, C., Parsons, D., Pope, E., Stacey, C., Sumner, E., Tank, S., & Talling, P. Turbidity currents can dictate organic carbon fluxes across river‐fed fjords: an example from Bute Inlet (BC, Canada). Journal of Geophysical Research: Biogeosciences, 127(6), (2022): e2022JG006824, https://doi.org/10.1029/2022jg006824.
    Description: The delivery and burial of terrestrial particulate organic carbon (OC) in marine sediments is important to quantify, because this OC is a food resource for benthic communities, and if buried it may lower the concentrations of atmospheric CO2 over geologic timescales. Analysis of sediment cores has previously shown that fjords are hotspots for OC burial. Fjords can contain complex networks of submarine channels formed by seafloor sediment flows, called turbidity currents. However, the burial efficiency and distribution of OC by turbidity currents in river-fed fjords had not been investigated previously. Here, we determine OC distribution and burial efficiency across a turbidity current system within Bute Inlet, a fjord in western Canada. We show that 62% ± 10% of the OC supplied by the two river sources is buried across the fjord surficial (30–200 cm) sediment. The sandy subenvironments (channel and lobe) contain 63% ± 14% of the annual terrestrial OC burial in the fjord. In contrast, the muddy subenvironments (overbank and distal basin) contain the remaining 37% ± 14%. OC in the channel, lobe, and overbank exclusively comprises terrestrial OC sourced from rivers. When normalized by the fjord’s surface area, at least 3 times more terrestrial OC is buried in Bute Inlet, compared to the muddy parts of other fjords previously studied. Although the long-term (〉100 years) preservation of this OC is still to be fully understood, turbidity currents in fjords appear to be efficient at storing OC supplied by rivers in their near-surface deposits.
    Description: S.H. acknowledges funding by the IAS postgraduate grant scheme, a Research Development funds offered by Durham University, and the NOCS/WHOI exchange program. S.H. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 899546. The field campaign and geochemical analyses were supported by Natural Environment Research Council grants NE/M007138/1, NE/W30601/1, NE/N012798/1, NE/K011480/1 and NE/M017540/1. M.J.B.C. was funded by a Royal Society Research Fellowship (DHF\R1\180166). M.A.C. was supported by the U.K. National Capability NERC CLASS program (NE/R015953/1) and NERC grants (NE/P009190/1 and NE/P005780/1). C.J.H. and M.S.H. were funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 721403 - ITN SLATE. E.L.P. was supported by a Leverhulme Early Career Fellowship (ECF-2018-267).
    Keywords: Fjords ; Organic carbon ; Sediment ; Submarine channel ; Carbon burial ; Rivers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-05-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(10),(2021): e2021JC017375.,https://doi.org/10.1029/2021JC017375.
    Description: The Deep Water Horizon oil spill dramatically impacted the Gulf of Mexico from the seafloor to the surface. While dispersion of contaminants at the surface has been extensively studied, little is known about deep water dispersion properties. This study describes the results of the Deep Water Dispersion Experiment (DWDE), which consisted of the release of surface drifters and acoustically tracked RAFOS floats drifting at 300 and 1,500 dbar in the Gulf of Mexico. We show that surface diffusivity is elevated and decreases with depth: on average, diffusivity at 1,500 dbar is 5 times smaller than at the surface, suggesting that the dispersion of contaminants at depth is a significantly slower process than at the surface. This study also examines the turbulent regimes driving the dispersion, although conflicting evidences and large uncertainties do not allow definitive conclusions. At all depths, while the growth of dispersion and kurtosis with time supports the possibility of an exponential regime at very short time scales, indicating that early dispersion is nonlocal, finite size Lyapunov exponents support the hypothesis of local dispersion, suggesting that eddies of size comparable to the initial separation (6 km), may dominate the early dispersion. At longer time scales, the quadratic growth of dispersion is indicative of a ballistic regime, where a mean shear flow would be the dominating process. Examination of the along- and across-bathymetry components of float velocities supports the idea that boundary currents could be the source for this shear dispersion.
    Description: This research has been funded by the Mexican National Council for Science and Technology - Mexican Ministry of Energy - Hydrocarbon Fund, project 201441. This is a contribution of the Gulf of Mexico Research Consortium (CIGoM).
    Description: 2022-03-18
    Keywords: Lagrangian experiment ; turbulence ; RAFOS ; relative dispersion ; Gulf of Mexico ; Deep Water Dispersion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57