ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous  (26)
  • 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques  (21)
  • Arctic Ocean  (20)
  • American Geophysical Union  (61)
Collection
  • 11
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L24602, doi:10.1029/2011GL049714.
    Description: We reconstructed subsurface (∼200–400 m) ocean temperature and sea-ice cover in the Canada Basin, western Arctic Ocean from foraminiferal δ18O, ostracode Mg/Ca ratios, and dinocyst assemblages from two sediment core records covering the last 8000 years. Results show mean temperature varied from −1 to 0.5°C and −0.5 to 1.5°C at 203 and 369 m water depths, respectively. Centennial-scale warm periods in subsurface temperature records correspond to reductions in summer sea-ice cover inferred from dinocyst assemblages around 6.5 ka, 3.5 ka, 1.8 ka and during the 15th century Common Era. These changes may reflect centennial changes in the temperature and/or strength of inflowing Atlantic Layer water originating in the eastern Arctic Ocean. By comparison, the 0.5 to 0.7°C warm temperature anomaly identified in oceanographic records from the Atlantic Layer of the Canada Basin exceeded reconstructed Atlantic Layer temperatures for the last 1200 years by about 0.5°C.
    Description: J.R.F., T.M.C., and R.C.T. thank support by USGS Global Change Program, G.S.D. thanks support from the USGS Global Change Program and the NSF Office of Polar Programs, A.d.V. thanks support by Fond québécois de la recherché sur la nature et les technologies (FQRNT) and the Ministere du Développement économique, innovation et exportation (MDEIE) of Quebec.
    Description: 2012-06-17
    Keywords: Arctic Ocean ; Atlantic Layer ; Temperature ; Variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015920, doi:10.1029/2019JC015920.
    Description: A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
    Description: Funding for Arctic GEOTRACES was provided by the U.S. National Science Foundation, Swedish Research Council Formas, French Agence Nationale de la Recherche and LabexMER, Netherlands Organization for Scientific Research, and Independent Research Fund Denmark. Data from GEOTRACES cruises GN01 (HLY1502) and GN04 (PS94) have been archived at the Biological and Chemical Oceanography Data Management Office (Biological and Chemical Oceanography Data Management Office (BCO‐DMO); https://www.bco-dmo.org/deployment/638807) and PANGAEA (https://www.pangaea.de/?q=PS94&f.campaign%5B%5D=PS94) websites, respectively. The inorganic carbon data are available at the NOAA Ocean Carbon Data System (OCADS; doi:10.3334/CDIAC/OTG.CLIVAR_ARC01_33HQ20150809).
    Description: 2020-10-08
    Keywords: Arctic Ocean ; Transpolar Drift ; trace elements ; carbon ; nutrients ; GEOTRACES]
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(3), (2019): 1679-1698, doi:10.1029/2018JC014759.
    Description: The characteristics and seasonality of the Svalbard branch of the Atlantic Water (AW) boundary current in the Eurasian Basin are investigated using data from a six‐mooring array deployed near 30°E between September 2012 and September 2013. The instrument coverage extended to 1,200‐m depth and approximately 50 km offshore of the shelf break, which laterally bracketed the flow. Averaged over the year, the transport of the current over this depth range was 3.96 ± 0.32 Sv (1 Sv = 106 m3/s). The transport within the AW layer was 2.08 ± 0.24 Sv. The current was typically subsurface intensified, and its dominant variability was associated with pulsing rather than meandering. From late summer to early winter the AW was warmest and saltiest, and its eastward transport was strongest (2.44 ± 0.12 Sv), while from midspring to midsummer the AW was coldest and freshest and its transport was weakest (1.10 ± 0.06 Sv). Deep mixed layers developed through the winter, extending to 400‐ to 500‐m depth in early spring until the pack ice encroached the area from the north shutting off the air‐sea buoyancy forcing. This vertical mixing modified a significant portion of the AW layer, suggesting that, as the ice cover continues to decrease in the southern Eurasian Basin, the AW will be more extensively transformed via local ventilation.
    Description: We are grateful to the crew of the R/V Lance for the collection of the data. The U.S. component of A‐TWAIN was funded by the National Science Foundation under grant ARC‐1264098 as well as a grant from the Steven Grossman Family Foundation. The Norwegian component of A‐TWAIN was funded by the “Arctic Ocean” flagship program at the Fram Centre. The data used in this study are available at http://atwain.whoi.edu and data.npolar.no (Sundfjord et al., 2017). The data from Fram Strait are available at https://doi.pangaea.de/10.1594/PANGAEA.853902
    Description: 2019-08-15
    Keywords: Atlantic Water ; Svalbard branch ; A‐TWAIN ; seasonality ; Arctic Ocean ; Fram Strait branch
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L07606, doi:10.1029/2012GL051574.
    Description: The carbon system of the western Arctic Ocean is undergoing a rapid transition as sea ice extent and thickness decline. These processes are dynamically forcing the region, with unknown consequences for CO2 fluxes and carbonate mineral saturation states, particularly in the coastal regions where sensitive ecosystems are already under threat from multiple stressors. In October 2011, persistent wind-driven upwelling occurred in open water along the continental shelf of the Beaufort Sea in the western Arctic Ocean. During this time, cold (〈−1.2°C), salty (〉32.4) halocline water—supersaturated with respect to atmospheric CO2 (pCO2 〉 550 μatm) and undersaturated in aragonite (Ωaragonite 〈 1.0) was transported onto the Beaufort shelf. A single 10-day event led to the outgassing of 0.18–0.54 Tg-C and caused aragonite undersaturations throughout the water column over the shelf. If we assume a conservative estimate of four such upwelling events each year, then the annual flux to the atmosphere would be 0.72–2.16 Tg-C, which is approximately the total annual sink of CO2 in the Beaufort Sea from primary production. Although a natural process, these upwelling events have likely been exacerbated in recent years by declining sea ice cover and changing atmospheric conditions in the region, and could have significant impacts on regional carbon budgets. As sea ice retreat continues and storms increase in frequency and intensity, further outgassing events and the expansion of waters that are undersaturated in carbonate minerals over the shelf are probable.
    Description: Funding for this work was provided by the National Science Foundation (ARC1041102 – JTM, OPP0856244-RSP, and ARC1040694- LWJ), the National Oceanic and Atmospheric Administration (CIFAR11021- RHB) and the West Coast & Polar Regions Undersea Research Center (POFP00983 – CLM and JM).
    Description: 2012-10-11
    Keywords: Arctic Ocean ; CO2 fluxes ; Ocean acidification ; Upwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: image/tiff
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124(8), (2019): 7562-7587, doi: 10.1029/2019JB017587.
    Description: From 1963 to 1973 the U.S. Geological Survey measured heat flow at 356 sites in the Amerasian Basin (Western Arctic Ocean) from a drifting ice island (T‐3). The resulting measurements, which are unevenly distributed on Alpha‐Mendeleev Ridge and in Canada and Nautilus Basins, greatly expand available heat flow data for the Arctic Ocean. Average T‐3 heat flow is ~54.7 ± 11.3 mW/m2, and Nautilus Basin is the only well‐surveyed area (~13% of data) with significantly higher average heat flow (63.8 mW/m2). Heat flow and bathymetry are not correlated at a large scale, and turbiditic surficial sediments (Canada and Nautilus Basins) have higher heat flow than the sediments that blanket the Alpha‐Mendeleev Ridge. Thermal gradients are mostly near‐linear, implying that conductive heat transport dominates and that near‐seafloor sediments are in thermal equilibrium with overlying bottom waters. Combining the heat flow data with modern seismic imagery suggests that some of the observed heat flow variability may be explained by local changes in lithology or the presence of basement faults that channel circulating seawater. A numerical model that incorporates thermal conductivity variations along a profile from Canada Basin (thick sediment on mostly oceanic crust) to Alpha Ridge (thin sediment over thick magmatic units associated with the High Arctic Large Igneous Province) predicts heat flow slightly lower than that observed on Alpha Ridge. This, along with other observations, implies that circulating fluids modulate conductive heat flow and contribute to high variability in the T‐3 data set.
    Description: B.V. Marshall of the U.S. Geological Survey (USGS) was critical to the T‐3 heat flow studies and would have been included as a coauthor on this work if he were not deceased. The original T‐3 heat flow data acquisition program was supported by the USGS and by the Naval Arctic Research Laboratory of the Office of Naval Research. Over the decade of USGS research on T‐3 Ice Island, numerous researchers and technical staff, including B.V. Marshall, P. Twichell, D. Scoboria, J. Tailleur, B. Tailleur, and others, spent months on the island and endured difficult and sometimes dangerous conditions to acquire this data set alongside colleagues from other institutions. Outstanding support from the USGS Menlo Park office, transportation and logistics assistance from other U.S. federal government agencies, Arctic expertise supplied by native Alaskan communities, and collaboration with Lamont researchers made this research program possible. B. Lachenbruch and L. Lawver revived interest in this data set in 2016, and they, along with D. Darby and J. K. Hall, provided ancillary information on T‐3 studies. B. Clarke and M. Arsenault assisted with initial data digitization. We thank M. Jakobsson, R. Saltus, and G. Oakey for providing critical shapefiles and other data and R. Jackson and S. Mukasa for clarification on unpublished information. Reviews by J. Hopper, P. Hart, and W. Jokat improved the manuscript, and V. Atnipp Cross and A. Babb were instrumental in completion of data releases. The USGS's Coastal/Marine Hazards and Resources Program supported C.R. and D.H. between 2016 and 2019, and C.R. used office space provided by the Earth Resources Laboratory at the Massachusetts Institute of Technology during completion of this work. Data in Figure 11 were provided by the U.S. Extended Continental Shelf (ECS) Project. The opinions, findings, and conclusions stated herein are those of the authors and the U.S. Geological Survey, but do not necessarily reflect those of the U.S. ECS Project. Any use of trade, firm, or product name is for descriptive purposes only and does not imply endorsement by the U.S. Government. Digital data, metadata, and supporting plots for T‐3 heat flow, navigation, and radiogenic heat content, along with Lamont gravity and magnetics data, are available from Ruppel et al. (2019), and the original T‐3 expedition report with explanatory metadata can be downloaded from Lachenbruch et al. (2019).
    Keywords: Arctic Ocean ; heat flow ; thermal history ; ice island
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C04008, doi:10.1029/2001JC001248.
    Description: Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean. Our analysis suggests that these mixing events were mechanically forced by intense storms moving across the buoy sites. In this study, we analyzed these mixing events in the context of storm developments that occurred in the Beaufort Sea and in the general area just north of Fram Strait, two areas with quite different hydrographic structures. The Beaufort Sea is strongly influenced by inflow of Pacific water through Bering Strait, while the area north of Fram Strait is directly affected by the inflow of warm and salty North Atlantic water. Our analyses of the basin-wide evolution of the surface pressure and geostrophic wind fields indicate that the characteristics of the storms could be very different. The buoy-observed mixing occurred only in the spring and winter seasons when the stratification was relatively weak. This indicates the importance of stratification, although the mixing itself was mechanically driven. We also analyze the distribution of storms, both the long-term climatology and the patterns for each year in the past 2 decades. The frequency of storms is also shown to be correlated (but not strongly) to Arctic Oscillation indices. This study indicates that the formation of new ice that leads to brine rejection is unlikely the mechanism that results in the type of mixing that could overturn the halocline. On the other hand, synoptic-scale storms can force mixing deep enough to the halocline and thermocline layer. Despite a very stable stratification associated with the Arctic halocline, the warm subsurface thermocline water is not always insulated from the mixed layer.
    Description: This study has been supported by the NASA Cryospheric Science Program and the International Arctic Reseach Center. We benefited from discussion with Dr. A. Proshutinsky. D. Walsh wishes to thank the Frontier Research System for Global Change for their support. The IOEB program was supported by ONR High-Latitude Dynamics Program and Japan Marine Science and Technology Center (JAMSTEC).
    Keywords: Arctic Ocean ; Mixing ; Storm ; Upper ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C00D03, doi:10.1029/2011JC006975.
    Description: Data collected by an autonomous ice-based observatory that drifted into the Eurasian Basin between April and November 2010 indicate that the upper ocean was appreciably fresher than in 2007 and 2008. Sea ice and snowmelt over the course of the 2010 drift amounted to an input of less than 0.5 m of liquid freshwater to the ocean (comparable to the freshening by melting estimated for those previous years), while the observed change in upper-ocean salinity over the melt period implies a freshwater gain of about 0.7 m. Results of a wind-driven ocean model corroborate the observations of freshening and suggest that unusually fresh surface waters observed in parts of the Eurasian Basin in 2010 may have been due to the spreading of anomalously fresh water previously residing in the Beaufort Gyre. This flux is likely associated with a 2009 shift in the large-scale atmospheric circulation to a significant reduction in strength of the anticyclonic Beaufort Gyre and the Transpolar Drift Stream.
    Description: This work was funded by the National Science Foundation Office of Polar Programs Arctic Sciences Section under awards ARC‐0519899, ARC‐0856479, and ARC‐ 0806306.
    Keywords: Arctic Ocean ; Circulation ; Fresh water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C03002, doi:10.1029/2003JC001962.
    Description: Pathways of Pacific Water flowing from the North Pacific Ocean through Bering Strait and across the Chukchi Sea are investigated using a two-dimensional barotropic model. In the no-wind case, the flow is driven only by a prescribed steady northward flow of 0.8 Sv through Bering Strait. The resulting steady state circulation consists of a broad northeasterly flow, basically following the topography, with a few areas of intensified currents. About half of the inflow travels northwest through Hope Valley, while the other half turns somewhat toward the northeast along the Alaskan coast. The flow through Hope Valley is intensified as it passes through Herald Canyon, but much of this flow escapes the canyon to move eastward, joining the flow in the broad valley between Herald and Hanna Shoals, another area of slightly intensified currents. There is a confluence of nearly all of the flow along the Alaskan coast west of Pt. Barrow to create a very strong and narrow coastal jet that follows the shelf topography eastward onto the Beaufort shelf. Thus in this no-wind case, nearly all of the Pacific Water entering the Chukchi Sea eventually ends up flowing eastward along the narrow Beaufort shelf, with no discernable flow across the shelf edge toward the interior Canada Basin. Travel times for water parcels to move from Bering Strait to Pt. Barrow vary tremendously according to the path taken; e.g., less than 6 months along the Alaskan coast, but about 30 months along the westernmost path through Herald Canyon. This flow field is relatively insensitive to idealized wind-forcing when the winds are from the south, west or north, in which cases the shelf transports tend to be intensified. However, strong northeasterly to easterly winds are able to completely reverse the flows along the Beaufort shelf and the Alaskan coast, and force most of the throughflow in a more northerly direction across the Chukchi Sea shelf edge, potentially supplying the surface waters of the interior Canada Basin with Pacific Water. The entire shelf circulation reacts promptly to changing wind conditions, with a response time of ~2–3 days. The intense coastal jet between Icy Cape and Pt. Barrow implies that dense water formed here from winter coastal polynyas may be quickly swept away along the coast. In contrast, there is a relatively quiet nearshore region to the west, between Cape Lisburne and Icy Cape, where dense water may accumulate much longer and continue to become denser before it is carried across the shelf.
    Description: Financial support was provided to PW by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), the Swedish Foundation for International Cooperation in Research and Higher Education (STINT), and the J. Seward Johnson Fund. Funding for DCC came through a grant from the Coastal Ocean Institute at WHOI.
    Keywords: Arctic Ocean ; Pacific Water ; Chukchi Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C04S01, doi:10.1029/2006JC004017.
    Description: This research is supported by the National Science Foundation Office of Polar Programs under cooperative agreements (OPP-0002239 and OPP-0327664) with the International Arctic Research Center, University of Alaska Fairbanks.
    Keywords: Modeling ; Arctic Ocean ; Dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C00D04, doi:10.1029/2010JC006688.
    Description: A sea ice model was developed by converting the Community Ice Code (CICE) into an unstructured-grid, finite-volume version (named UG-CICE). The governing equations were discretized with flux forms over control volumes in the computational domain configured with nonoverlapped triangular meshes in the horizontal and solved using a second-order accurate finite-volume solver. Implementing UG-CICE into the Arctic Ocean finite-volume community ocean model provides a new unstructured-grid, MPI-parallelized model system to resolve the ice-ocean interaction dynamics that frequently occur over complex irregular coastal geometries and steep bottom slopes. UG-CICE was first validated for three benchmark test problems to ensure its capability of repeating the ice dynamics features found in CICE and then for sea ice simulation in the Arctic Ocean under climatologic forcing conditions. The model-data comparison results demonstrate that UG-CICE is robust enough to simulate the seasonal variability of the sea ice concentration, ice coverage, and ice drifting in the Arctic Ocean and adjacent coastal regions.
    Description: This work was supported by the NSF Arctic Program for projects with grant numbers of ARC0712903, ARC0732084, and ARC0804029. The Arctic Ocean Model Intercomparison Project (AOMIP) has provided an important guidance for model improvements and ocean studies under coordinated experiments activities. We would like to thank AOMIP PI Proshutinsky for his valuable suggestions and comments on the ice dynamics. His contribution is supported by ARC0800400 and ARC0712848. The development of FVCOM was supported by the Massachusetts Marine Fisheries Institute NOAA grants DOC/NOAA/ NA04NMF4720332 and DOC/NOAA/NA05NMF4721131; the NSF Ocean Science Program for projects of OCE‐0234545, OCE‐0227679, OCE‐ 0606928, OCE‐0712903, OCE‐0726851, and OCE‐0814505; MIT Sea Grant funds (2006‐RC‐103 and 2010‐R/RC‐116); and NOAA NERACOOS Program for the UMASS team. G. Gao was also supported by the Chinese NSF Arctic Ocean grant under contract 40476007. C. Chen’s contribution was also supported by Shanghai Ocean University International Cooperation Program (A‐2302‐10‐0003), the Program of Science and Technology Commission of Shanghai Municipality (09320503700), the Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50702), and Zhi jiang Scholar and 111 project funds of the State Key Laboratory for Estuarine and Coastal Research, East China Normal University (ECNU).
    Keywords: Arctic Ocean ; Finite-volume ; Sea ice modeling ; Unstructured-grid
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...