ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology  (24)
  • JSTOR Archive Collection Business II
  • American Geophysical Union  (19)
  • Wiley  (6)
  • Geological Society of London
  • International Union of Crystallography (IUCr)
Collection
Years
  • 1
    Journal cover
    Unknown
    Wiley | JSTOR | formerly Oxford University Press (OUP)
    Online: 10(1).1988 –
    Formerly as: Illinois Agricultural Economics; North Central Journal of Agricultural Economics; Review of Agricultural Economics  (1961–2009)
    Publisher: Wiley , JSTOR , formerly Oxford University Press (OUP)
    Print ISSN: 0191-9016 , 1058-7195 , 2040-5790
    Electronic ISSN: 1467-9353 , 2040-5804
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Keywords: JSTOR Archive Collection Business II
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Journal cover
    Unknown
    Wiley | JSTOR
    Online: 78.1976 – (older than 6 years)
    Publisher: Wiley , JSTOR
    Print ISSN: 0347-0520
    Electronic ISSN: 1467-9442
    Topics: Economics
    Keywords: JSTOR Archive Collection Business II
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Journal cover
    Unknown
    Wiley | Financial Management Association International | JSTOR
    Online: 1(1).1972 – (older than 4 years)
    Publisher: Wiley , Financial Management Association International , JSTOR
    Print ISSN: 0046-3892
    Electronic ISSN: 1755-053X
    Topics: Economics
    Keywords: JSTOR Archive Collection Business II
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-24
    Description: On 24 August 2013 a sudden gas eruption from the ground occurred in the Tiber river delta, nearby Rome's international airport of Fiumicino. We assessed that this gas, analogous to other minor vents in the area, is dominantly composed of deep, partially mantle-derived CO2, as in the geothermal gas of the surrounding Roman Comagmatic Province. Increased amounts of thermogenic CH4 are likely sourced from Meso-Cenozoic petroleum systems, overlying the deep magmatic fluids. We hypothesize that the intersection of NE-SW and N-S fault systems, which at regional scale controls the location of the Roman volcanic edifices, favors gas uprising through the impermeable Pliocene and deltaic Holocene covers. Pressurized gas may temporarily be stored below these covers or within shallower sandy, permeable layers. The eruption, regardless the triggering cause—natural or man-made, reveals the potential hazard of gas-charged sediments in the delta, even at distances far from the volcanic edifices.
    Description: Published
    Description: 5632–5636
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: geothermal gas ; deep CO2 ; Tiber river delta ; thermogenic CH4 ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-11-26
    Description: We describe the evolution of the volcanic activity and deformation patterns observed at Mount Etna during the July–August 2001 eruption. Seismicity started at 3000 m below sea level on 13 July, accompanied by moderate ground swelling. Ground deformation culminated on 16 July with the development of a NE–SW graben c. 500 m wide and c. 1 m deep in the Cisternazza area at 2600–2500 m above sea level on the southern slope of the volcano. On 17 July, the eruption started at the summit of Mount Etna from the SE Crater (central–lateral eruptive system), from which two radial, c. 30 m wide, c. 3000 m long fracture zones, associated with eruptive fissures, propagated both southward (17 July) and northeastward (20 July). On 18 July, a new vent formed at 2100 m elevation, at the southern base of the Montagnola, followed on the next day by the opening of a vent further upslope, at 2550 m (eccentric eruptive system). The eruption lasted for 3 weeks. Approximately 80% of the total lava volume was erupted from the 2100 m and the 2550 m vents. The collected structural data suggest that the Cisternazza graben developed as a passive local response of the volcanic edifice to the ascent of a north–south eccentric dyke, which eventually reached the ground surface in the Montagnola area (18–19 July). In contrast, the two narrow fracture zones radiating from the summit are interpreted as the lateral propagation, from the conduit of the SE Crater, of north–south- and NE–SW-oriented shallow dykes, 2–3 m wide. The evolution of the fracture pattern together with other volcanological data (magma ascent and effusion rate, eruptive style, petrochemical characteristics of the erupted products, and petrology of xenoliths within magma) suggest that the eccentric and central–lateral eruptions were fed by two distinct magmatic systems. Examples of eccentric activity accompanied by central–lateral events have never been described before at Etna.
    Description: Published
    Description: 531-544
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Mount Etna ; July–August 2001 Eruption ; magmas ; dykes ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The active tectonics at the front of the Southern Apennines and in the Adriatic foreland is characterized by E-W striking, right-lateral seismogenic faults, interpreted as reactivated inherited discontinuities. The best studied among these is the Molise-Gondola shear zone (MGsz). The interaction of these shear zones with the Apennines chain is not yet clear. To address this open question we developed a set of scaled analogue experiments, aimed at analyzing: 1) how dextral strike-slip motion along a pre-existing zone of weakness within the foreland propagates toward the surface and affects the orogenic wedge; 2) the propagation of deformation as a function of displacement; 3) any insights on the active tectonics of Southern Italy. Our results stress the primary role played by these inherited structures when reactivated, and confirm that regional E-W dextral shear zones are a plausible way of explaining the seismotectonic setting of the external areas of the Southern Apennines.
    Description: INGV, Università degli Studi di Pavia
    Description: Published
    Description: 21
    Description: open
    Keywords: Active strike-slip fault ; sandbox model ; southern Italy ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 5190977 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: An example of sheet-like intrusion emplacement at very shallow crustal levels on Elba Island, Italy, is described. The Eastern Elba Dyke Complex (EEDC) consists of decimetre- to metre-thick sheeted aplites emplaced within intensely folded low-grade metamorphic rocks. Field data indicate that sill and dyke emplacement was controlled by mechanical discontinuities, represented by fractures in the host rocks, and was strongly favoured by magma overpressure. The occurrence of angular fragments of host rocks in the dyke border zones and the branching of sills testify to hydraulic fracturing. Analysis of the spatial distribution and geometry of EEDC sills and dykes provides clues on fluid pressure conditions and the stress state at the time of magma emplacement, as well as on the depth of emplacement. The calculated stress ratio and driving pressure ratio were used to estimate a magma overpressure of 6–54 MPa at the time of emplacement of the EEDC at a depth of about 2 km.
    Description: Published
    Description: 121-129
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: N/A or not JCR
    Description: reserved
    Keywords: Hydrofractures ; magma emplacement ; upper crust ; southern Tuscany ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Volcanoes deform as a consequence of the rise and storage of magma; once magma reaches a critical pressure, an eruption occurs. However, how the edifice deformation relates to its eruptive behavior is poorly known. Here, we produce a joint interpretation of spaceborne InSAR deformation measurements and volcanic activity at Mt. Etna (Italy), between 1992 and 2006. We distinguish two volcano-tectonic behaviors. Between 1993 and 2000, Etna inflated with a starting deformation rate of 1 cm yr 1 that progressively reduced with time, nearly vanishing between 1998 and 2000; moreover, low-eruptive rate summit eruptions occurred, punctuated by lava fountains. Between 2001 and 2005, Etna deflated, feeding higher-eruptive rate flank eruptions, along with large displacements of the entire East-flank. These two behaviors, we suggest, result from the higher rate of magma stored between 1993 and June 2001, which triggered the emplacement of the dike responsible for the 2001 and 2002–2003 eruptions. Our results clearly show that the joint interpretation of volcano deformation and stored magma rates may be crucial in identifying impending volcanic eruptions.
    Description: This work was partly funded by INGV and the Italian DPC and was supported by ASI, the Preview Project and CRdC-AMRA. DPC-INGV Flank project providing the funds for the publication fees.
    Description: Published
    Description: L02309
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: partially_open
    Keywords: deformation ; eruptions ; Mt. Etna ; eruptive cycle ; InSAR ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2017-04-04
    Description: A circular dome from Lipari Island consists of latitic enclaves hosted in a rhyolitic magma. A strain analysis of the enclaves has been carried out and the pure shear (a) and simple shear (g) deformation, the vorticity number Wk and flow kinematics are determined. The axial ratio Rf of the enclaves and the angle f between the long axis of the enclaves and the transport direction are measured in 131 sites concentrated in the axial zone (z1), upper-distal zone (z2) and basal zone (z3) of the flow. The f values depict a pattern suggesting endogenous growth. In z1, a/g 〉 1. In z2, 1 〈 a 〈 1.35 and 1.8 〈 g 〈 0.5. In z3, 1 〈 a 〈 1.5 and 0.3 〈 g 〈 2.8. In z1, Wk 〈 0.5. In z2 and z3, Wk 〉 0.8. Lateral stretching due to the upward motion of magma from the conduit prevails in z1. Here the increase of pure shear strain from the bottom to the top reflects strain accumulation due to endogenous growth. z2 and z3 suffer simple shear deformation. In z3, the sense of shear is consistent with the transport direction. An opposite sense of shear characterizes z2. This is due to velocity gradients located in the lower and upper portions of the flow. The kinematics is viscous spreading in z1 and viscous gliding (hyperbolic flow) in z2â z3.Possible rupturing of the exterior may be important in z1, where lateral stretching occurs, and in z3, where g is at a maximum. The effusion rate is 1.93 m3/s. Strain rates calculated using structural data span a range from 1.9 to 5.8.10 6 s 1.
    Description: Published
    Description: 1-10
    Description: partially_open
    Keywords: lava domes ; kinematics ; emplacement mechanism ; strain analysis ; enclaves ; viscous flows ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 419 bytes
    Format: 529103 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Understanding Etnean flank instability is hampered by uncertainties over its western boundary. Accordingly, we combine soil radon emission, InSAR and EDM data to study the Ragalna fault system (RFS) on the SW flank of the volcano. Valuable synergy developed between our differing techniques, producing consistent results and serving as a model for other studies of partly obscured active faults. The RFS, limited in its surface expression, is revealed as a complex interlinked structure ~14 km long that extends from the edifice base towards the area of summit rifting, possibly linking north-eastwards to the Pernicana fault system (PFS) to define the unstable sector. Short-term deformation rates on the RFS from InSAR data reach ~7 mm a-1 in the satellite line of sight on the upslope segment and ~5 mm a-1 on the prominent central segment. While combining this with EDM data confirms the central segment of the RFS as a dextral transtensive structure, with strike-slip and dip-slip components of ~3.4 and ~3.7 mm a-1 respectively. We measured thoron (220Rn, half-life 56 secs) as well as radon and, probably because of its limited diffusion range, this appears a more sensitive but previously unexploited isotope for pinpointing active near-surface faults. Contrasting activity of the PFS and RFS reinforces proposals that the instability they bound is divided into at least three sub-sectors by intervening faults, while, in section, fault-associated basal detachments also form a nested pattern. Complex temporal and spatial movement interactions are expected between these structural components of the unstable sector.
    Description: Published
    Description: B04410
    Description: JCR Journal
    Description: partially_open
    Keywords: Multidisciplinary study; Ragalna fault system; radon and thoron; InSAR; EDM; volcano collapse models ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2236005 bytes
    Format: 978243 bytes
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...