ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry  (6)
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases  (5)
  • ddc:551.48
  • Blackwell Publishing Ltd  (8)
  • Elsevier Science  (4)
  • American Chemical Society (ACS)
Collection
Language
  • 1
    Publication Date: 2020-12-09
    Description: We report a new case of methane (CH4) of apparent abiotic origin in continental serpentinized ultramafic rocks. Multiple analytical techniques, on-site and in the laboratory, revealed methane and ethane degassing from hyperalkaline (pH 〉 11) Ca2þ eOH mineral waters in boreholes drilled in the Alter-do- Chão igneous intrusion, at Cabeço de Vide, in mainland Portugal. The C and H isotopic composition of CH4 (d13C w 20&; d2H: 283&) suggests a dominant abiotic origin, although minor thermogenic contributions cannot be excluded. Similarly, low methane-to-ethane ratios suggest a predominantly nonmicrobial source, consistent with previous microbiological data showing the lack of methanogenic archaea in these waters. Heavier hydrocarbons, CO2 and H2 are below detection limits. This case study confirms that CH4 from serpentinized ultramafic rocks can be transported by hyperalkaline fluids linked to deep circulation of meteoric waters. Maximum depth of Cabeço de Vide serpentinized rocks is less than 1 km, and present temperatures are likely lower than 50 C. Serpentinization and related gas formation may have occurred at any time during thermal evolution of the igneous intrusion, so gas formation temperature cannot be easily determined. This case is an opportunity to test thermometry provided by CH4 isotopologue analyses. The existence of methane in continental serpentinized igneous rocks is more widespread than previously thought and petroleum systems with similar serpentinized ultramafics in reservoir rocks may have traces of the observed 13C-enriched CH4
    Description: Published
    Description: 12-16
    Description: 7A. Geofisica di esplorazione
    Description: JCR Journal
    Description: restricted
    Keywords: Abiotic methane, serpentinization ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-22
    Description: Natural hydrocarbon gas seeps are surface expressions of Petroleum Seepage Systems, whereby gas is ascending through faults from pressurized reservoirs that are typically associated with sandstones or limestones. A spectacular “eternal flame” in western New York State marks a gas macroseep of dominantly thermogenic origin emanating directly from deep shale source rocks, which makes this a rare case in contrast to most Petroleum Seepage Systems where gas derives from conventional reservoirs. The main flaming seep releases about 1 kg of methane per day and may feature the highest ethane and propane (C2 þ C3) concentration ever reported for a natural gas seep (w35 vol. %). The same gas is also released to the atmosphere through nearby invisible and diffuse seepages from the ground. The synopsis of our data with available gas-geochemical data of reservoir gases in the region and the stratigraphy of underlying shales suggests that the thermogenic gas originates from Upper Devonian shales without intermediation of a conventional reservoir. A similar investigation on a second “eternal flame” in Pennsylvania suggests that gas is migrating from a conventional sandstone pool and that the seep is probably not natural but results from an undocumented and abandoned gas or oil well. The large flux of the emitted shale gas in New York State implies the existence of a pressurized gas pool at depth. Tectonically fractured shales seem to express “naturally fracked” characteristics and may provide convenient targets for hydrocarbon exploration. Gas production from “tectonically fracked” systems might not require extensive artificial fracking.
    Description: Published
    Description: 178-186
    Description: 7A. Geofisica di esplorazione
    Description: JCR Journal
    Description: restricted
    Keywords: gas seep, methane, shale-gas, hydrocarbons ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The paper describes a case of a natural emission of methane from soil in an urban development area, generating a significant risk for the local population and buildings, due to gas explosiveness and asphyxiation potential. The site is located on the south-western margin of the East-European Platform in eastern Romania, in a hydrocarbon-prone area crossed by the Pericarpathian lineament and regional faults. Molecular composition of gas and stable isotopic analyses of methane (CH4〉90%, δ to the power of 13 C1: -49.4‰, δD1: -173.4‰) indicate a dominant thermogenic origin, with significant amounts of C2-C5 alkanes (~5%), likely migrating through faults from a deep reservoir. Possible candidates are the Saucesti and Secuieni gas fields, located in the same petroleum system. Two surface geochemical surveys, based on closed-chamber flux measurements, were performed to assess the degassing intensity and the extent of the affected area. Methane fluxes from soil reach orders of 10 to the power of 4 mg m to the power of -2 day to the power of -1. Gas seepage mainly occurs in one zone 30 000 m2 wide, and it is likely controlled by channeling along a fault and gas accumulation in permeable sediments and shallow subsoil. The estimated total CH4 emission is about 40 t year to the power of -1 CH4, of which 8–9 t year to the power of -1 are naturally released from soil and 30–35 t year to the power of -1 are emitted from shallow boreholes. These wells have likely channeled the gas accumulated in shallow alluvial sediment but gas flux from soil is still high and mitigation measures are needed to reduce the risk for humans and buildings.
    Description: Published
    Description: 311-320
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: gas hazard ; methane seepage ; soil degassing ; thermogenic gas ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The Chimaera gas seep, near Antalya (SW Turkey), has been continuously active for thousands of years and it is known to be the source of the first Olympic fire in the Hellenistic period. New and thorough molecular and isotopic analyses including methane (approximately 87% v/v; δ to the power of 13 C1 from -7.9‰ to -12.3‰; δ to the power of 13 D1 from -119‰ to -124‰), light alkanes (C2 + C3 + C4 + C5 = 0.5%; C6+: 0.07%; δ to the power of 13 C2 from -24.2‰ to -26.5‰; δ to the power of 13 C3 from -25.5‰ to -27‰), hydrogen (7.5–11%), carbon dioxide (0.01–0.07%; δ to the power of 13 CCO2: -15‰), helium (approximately 80 ppmv; R/Ra: 0.41) and nitrogen (2–4.9%; δ to the power of 15 N from -2‰ to -2.8‰) converge to indicate that the seep releases a mixture of organic thermogenic gas, related to mature type III kerogen occurring in Palaeozoic and Mesozoic organic-rich sedimentary rocks, and abiogenic gas produced by low-temperature serpentinization in the Tekirova ophiolitic unit. Methane is not related to mantle or magma degassing. The abiogenic fraction accounts for about half of the total gas released, which is estimated to be well beyond 50 ton year to the power of -1. Ophiolites and limestones are in contact along a tectonic dislocation leading to gas mixing and migration to the Earth’s surface. Chimaera represents the biggest emission of abiogenic methane on land discovered so far. Deep and pressurized gas accumulations are necessary to sustain the Chimaera gas flow for thousands of years and are likely to have been charged by an active inorganic source.
    Description: Published
    Description: 263-273
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: abiogenic methane ; isotopic composition ; ophiolites ; seep ; serpentinization ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Despite the advance in our understanding of the carbon exchange between terrestrial ecosystems and the atmosphere, semiarid ecosystems have been poorly investigated and little is known about their role in the global carbon balance. We used eddy covariance measurements to determine the exchange of CO2 between a semiarid steppe and the atmosphere over 3 years. The vegetation is a perennial grassland of Stipa tenacissima L. located in the SE of Spain. We examined diurnal, seasonal and interannual variations in the net ecosystem carbon balance (NECB) in relation to biophysical variables. Cumulative NECB was a net source of 65.7, 143.6 and 92.1 g C mˉ2 yrˉ1 for the 3 years studied, respectively. We separated the year into two distinctive periods: dry period and growing season. The ecosystem was a net source of CO2 to the atmosphere, particularly during the dry period when large CO2 positive fluxes of up to 15 μmol mˉ2 sˉ1 were observed in concomitance with large wind speeds. Over the growing season, the ecosystem was a slight sink or neutral with maximum rates of -2.3 μmol mˉ2 sˉ1. Rainfall events caused large fluxes of CO2 to the atmosphere and determined the length of the growing season. In this season, photosynthetic photon flux density controlled day-time NECB just below 1000 μmol mˉ2 sˉ1. The analyses of the diurnal and seasonal data and preliminary geological and gas-geochemical evaluations, including C isotopic analyses, suggest that the CO2 released was not only biogenic but most likely included a component of geothermal origin, presumably related to deep fluids occurring in the area. These results highlight the importance of considering geological carbon sources, as well as the need to carefully interpret the results of eddy covariance partitioning techniques when applied in geologically active areas potentially affected by CO2-rich geofluid circulation.
    Description: Published
    Description: 539–554
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: alpha grass ; carbon sequestration ; ecosystem respiration ; eddy covariance ; geogas ; geothermal activity ; grasslands ; net ecosystem carbon balance ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The mephitis of Maschito, known since historical times as Lago Fetente (Smelly Lake) -although the lake is now dry-, is located twenty kilometers from the Mt. Vulture volcanic edifice (Southern Italy). It is placed along the same regional tectonic discontinuity where some maars are located, close to the boundary between the foredeep and the Apulian foreland. About 300 m2 of surface is lacking in flora, while dead animals are frequently found all around it. The smelly exhalations are mainly composed of CO2 (∼ 98 %), and, in lesser amounts, of H2S, N2, CH4 and other hydrocarbons. He, Ne and Ar occur in trace amounts. The CO2 isotopic composition is in the range of that of the main active Italian volcanic gases. The helium isotopic ratio (4.7 Ra) fits with the values measured in Mt. Vulture volcano and particularly with the olivine and pyroxene fluid inclusions of mantle xenoliths ejected during its last volcanic activity (140,000 years). The 40Ar/36Ar isotopic ratio of ∼320 supports some minor non-atmospheric contributions. The C/3He ratio (2.9x109) is in the typical range of magma released fluids, while δ13C(CH4) and δD(CH4) values fall in the field of thermogenic methane. T The amount of CO2 released is about 3200 tons/year. The flux of mantle-derived helium (〉 7 x1010 atoms m-2s-1) is at least three orders of magnitude higher than that of a stable continental crust. This study strongly supports the possibility that Maschito manifestations are fed by a geothermal system, which is powered by a degassing melt, bearing in mind that the Maschito gas emissions fall along the same fault system of the Monticchio maars, which formed during Mt. Vulture volcano’s last activity.
    Description: Published
    Description: 309-314
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Geothermal System ; Helium ; Gas flux ; tectonics ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Methane soil flux measurements have been made in 38 sites at the geothermal system of Sousaki (Greece) with the closed chamber method. Fluxes range from –47.6 to 29,150 mg m-2 d-1 and the diffuse CH4 output of the system has been estimated at 19 t a-1. Contemporaneous CO2 flux measurements showed a moderate positive correlation between CO2 and CH4 fluxes. Comparison of the CO2/CH4 soil flux ratios with the CO2/CH4 ratio of the gases of the main gas manifestations provided evidence for methanotrophic activity within the soil. Laboratory CH4 consumption experiments confirmed the presence of methanotrophic microorganisms in soil samples collected at Sousaki. Consumption was generally in the range from –4.9 to –38.9 pmolCH4 h-1 g-1 but could sometimes reach extremely high values (–33,000 pmolCH4 h-1 g-1.). These results are consistent with recent studies on other geothermal systems that revealed the existence of thermoacidophilic bacteria exerting methanotrophic activity in hot, acid soils, thereby reducing methane emissions to the atmosphere.
    Description: Published
    Description: 97–107
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Sousaki ; accumulation chamber ; soil degassing ; hydrothermal systems ; methane output ; methanotrophic activity ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The studied area is a 130 km long fast spreading graben in Central Greece. Its complex geodynamical setting includes both the presence of a subduction slab at depth responsible for the recent (Quaternary) volcanic activity in the area and the western termination of a tectonic lineament of regional importance (the North-Anatolian fault). A high geothermal gradient is made evident by the presence of many thermal springs with temperatures from 19 to 82 C, that discharge along the normal faults bordering the graben. In the period 2004e2012, 58 gas and 69 water samples were collected and their chemical and isotopic analysis revealed a wide range of compositions. Two main groups of thermal waters can be distinguished on the basis of their chemical composition. The first, represented by dilute waters (E.C. 〈0.6 mS/cm) of the westernmost sites, is characterised by the presence of CH4-rich and mixed N2eCH4 gases. The second displays higher salinities (E.C. from 12 to 56 mS/cm) due to mixing with a modified marine component. Reservoir temperatures of 150e160 C were estimated with cationic geothermometers at the easternmost sites. Along the graben, from west to east, the gas composition changes from CH4- to CO2-dominated through mixed N2eCH4 and N2eCO2 compositions, while at the same time the He isotopic composition goes from typical crustal values (〈0.1 R/RA) up to 0.87 R/RA, showing in the easternmost sites a small (3e11%) but significant mantle input. The d13C values of the CO2-rich samples suggest a mixed origin (mantle and marine carbonates).
    Description: Published
    Description: 295-308
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Rift zone ; geothermal activity ; Helium isotopes ; Carbon isotopes ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: This thematic issue of Geofluids includes 11 papers representing the three main topics discussed in the 10th edition of the International Conference on Gas Geochemistry (ICGG-10): (i) gas in petroleum systems and seepage, (ii) gas in geothermal systems and volcanoes and (iii) gas, seismicity and geohazards. ICGG-10 was held in 2009 in Romania, a country extraordinarily rich in surface gas manifestations, that offers innumerable opportunities for innovative studies on gas geochemistry. We briefly describe the present knowledge on gases occurring both in petroliferous sedimentary basins and geothermal areas of Romania. The 11 contributions of this special issue, which include data from eight countries, are then summarised. Based on these papers and other works presented at the ICGG-10, we find that significant advances in analytical capabilities, data treating and interpretation have led to innovative insights into the origin, distribution and environmental impact of gases migrating to the Earth’s surface. It is increasingly clear, in particular, that gas geochemistry can be more effective for petroleum exploration, volcano-tectonic, geodynamic and environmental studies, if multiparametric studies are performed and the data are interpreted in the geological context.
    Description: Published
    Description: 457-462
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: geothermal gas ; international conference on gas geochemistry ; natural gas ; romania ; seeps ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Natural gas seeps in the Alpine region are poorly investigated. However, they can provide useful information regarding the hydrocarbon potential of sedimentary Alpine units and related geofluid migration, typically controlled by pressurized gas accumulations and tectonics. A gas seep located near Giswil, in the Swiss Northern Alps, was investigated, for the first time, for molecular and isotopic gas composition, methane flux to the atmosphere, and gas flux variations over time. The analyses indicated that the gas was thermogenic (CH4 〉 96%; d13C1: )35.5& to )40.2&) and showed evidence of subsurface petroleum biodegradation (13C-enriched CO2, and very low C3+ concentrations). The source rock in the region is marine Type II kerogen, which is likely the same as that providing thermogenic gas in the nearby Wilen shallow well, close to Lake Sarnen. However, the lack of d13CCO2 and d13C3 data for that well prevented us from determining whether the Wilen and Giswil seeps are fed by the same reservoir and seepage system. Gas fluxes from the Giswil seep, measured using a closedchamber system, were significant and mainly from two major vents. However, a substantial gas exhalation from the soil occurs diffusely in an area of at least 115 m2, leading to a total CH4 output conservatively estimated to be at least 16 tonnes per year. Gas flux variations, monitored over a 1-month period by a special tent and flowmeter, showed not only daily meteorological oscillations, but also an intrinsic ‘pulsation’ with periods of enhanced flux that lasted 2–6 h each, occurring every few days. The pulses are likely related to episodes of gas pressure build-up and discharge along the seepage system. However, to date, no relationship to seismicity in the active Sarnen strike-slip fault system has been established.
    Description: Published
    Description: 476-485
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Alps ; isotopes ; methane ; organic geochemistry ; seeps ; Switzerland ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...