ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:550.724  (15)
  • Additives
  • perovskiteferroelectricpowder neutron diffraction
  • Springer Berlin Heidelberg  (16)
  • American Chemical Society  (2)
  • International Union of Crystallography (IUCr)  (2)
  • 11
    Publication Date: 2023-06-23
    Description: While Terzaghi justified his principle of effective stress for water-saturated soil empirically, it can be derived by means of the neutrality of the mineral with respect to changes of the pore water pressure p w. This principle works also with dilating shear bands arising beyond critical points of saturated grain fabrics, and with patterns of shear bands as relics of critical phenomena. The shear strength of over-consolidated clay is explained without effective cohesion, which results also from swelling up to decay, while rapid shearing of water-saturated clay can lead to a cavitation of pore water. The p w-neutrality is also confirmed by triaxial tests with sandstone samples, while Biot’s relation with a reduction factor for p w is contestable. An effective stress tensor is heuristically legitimate also for soil and rock with relics of critical phenomena, particularly for critical points with a Mohr–Coulomb condition. Therein, the p w-neutrality of the solid mineral determines the interaction of solid fabric and pore water, but numerical models are questionable due to fractal features.
    Description: Karlsruher Institut für Technologie (KIT) (4220)
    Keywords: ddc:550.724 ; Effective stress ; Interaction of solid fabric and pore water ; Pore pressure neutrality of mineral ; Shear bands and cracks
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-06-23
    Description: In this work, a constitutive model able to capture the strain rate dependency, small strain effects and the inherent anisotropy is proposed considering the influence of the overconsolidation ratio (OCR). Small strain effects are captured by using an extended ISA plasticity formulation (Fuentes and Triantafyllidis in Int J Numer Anal Methods Geomech 39(11):1235–1254, 2015). The strain rate dependency is reproduced by incorporating a third strain rate mechanism (in addition to the elastic and hypoplastic strain rate). A loading surface has been incorporated to define a three-dimensional (3D) overconsolidation ratio and to account for its effects on the simulations. Experimental investigations using Kaolin Clay and Lower Rhine Clay with horizontal bedding plane have shown that under undrained cycles of small strain amplitudes (\10-4 ), the effective stress path in the p–q space is significantly inclined towards the left upper corner of the p - q plane. Consequently, a transversely (hypo)elastic stiffness has been successfully formulated to capture this behaviour. The performance of the model has been inspected by simulating the database of approximately 50 cyclic undrained triaxial (CUT) tests on low-plasticity Kaolin Clay (Wichtmann and Triantafyllidis) considering different deviatoric stress amplitudes, initial stress ratios, displacement rate, overconsolidation ratio and cutting direction. Furthermore, 4 CUT tests conducted on high-plasticity Lower Rhine Clay were simulated, whereby the influence of the displacement rate, as well as the deviatoric stress amplitude, has been analysed. The simulations showed a good congruence with the experimental observations.
    Keywords: ddc:550.724 ; Anisotropy ; Clay ; Cyclic loading ; Excessive pore water pressure ; Rate dependency ; Soft soils ; Silt ; Time dependency ; Viscosity
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-12-07
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in James, B., de Vos, A., Aluwihare, L., Youngs, S., Ward, C., Nelson, R., Michel, A., Hahn, M., & Reddy, C. Divergent forms of pyroplastic: lessons learned from the M/V X-Press Pearl ship fire. ACS Environmental Au, 2(5), (2022): 467–479, https://doi.org/10.1021/acsenvironau.2c00020.
    Description: In late May 2021, the M/V X-Press Pearl container ship caught fire while anchored 18 km off the coast of Colombo, Sri Lanka and spilled upward of 70 billion pieces of plastic or “nurdles” (∼1680 tons), littering the country’s coastline. Exposure to combustion, heat, chemicals, and petroleum products led to an apparent continuum of changes from no obvious effects to pieces consistent with previous reports of melted and burned plastic (pyroplastic) found on beaches. At the middle of this continuum, nurdles were discolored but appeared to retain their prefire morphology, resembling nurdles that had been weathered in the environment. We performed a detailed investigation of the physical and surface properties of discolored nurdles collected on a beach 5 days after the ship caught fire and within 24 h of their arrival onshore. The color was the most striking trait of the plastic: white for nurdles with minimal alteration from the accident, orange for nurdles containing antioxidant degradation products formed by exposure to heat, and gray for partially combusted nurdles. Our color analyses indicate that this fraction of the plastic released from the ship was not a continuum but instead diverged into distinct groups. Fire left the gray nurdles scorched, with entrained particles and pools of melted plastic, and covered in soot, representing partial pyroplastics, a new subtype of pyroplastic. Cross sections showed that the heat- and fire-induced changes were superficial, leaving the surfaces more hydrophilic but the interior relatively untouched. These results provide timely and actionable information to responders to reevaluate cleanup end points, monitor the recurrence of these spilled nurdles, gauge short- and long-term effects of the spilled nurdles to the local ecosystem, and manage the recovery of the spill. These findings underscore partially combusted plastic (pyroplastic) as a type of plastic pollution that has yet to be fully explored despite the frequency at which plastic is burned globally.
    Description: This work was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. Additional support was provided by the WHOI Marine Microplastics Catalyst Program, the WHOI Marine Microplastics Innovation Accelerator Program, the WHOI Investment in Science Fund, the March Marine Initiative (a program of March Limited, Bermuda), The Seaver Institute, Gerstner Philanthropies, the Wallace Research Foundation, the Richard Saltonstall Charitable Foundation, the Harrison Foundation, Hollis and Ermine Lovell Charitable Foundation, and the Richard Grand Foundation. AdV was supported by funding from the Schmidt Foundation.
    Keywords: Microplastic ; Resin pellets ; Pollution ; Additives ; Open burning ; Weathering ; Maritime accident
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Walsh, A. N., Reddy, C. M., Niles, S. F., McKenna, A. M., Hansel, C. M., & Ward, C. P. Plastic formulation is an emerging control of its photochemical fate in the ocean. Environmental Science & Technology, 55(18), (2021): 12383–12392, https://doi.org/10.1021/acs.est.1c02272.
    Description: Sunlight exposure is a control of long-term plastic fate in the environment that converts plastic into oxygenated products spanning the polymer, dissolved, and gas phases. However, our understanding of how plastic formulation influences the amount and composition of these photoproducts remains incomplete. Here, we characterized the initial formulations and resulting dissolved photoproducts of four single-use consumer polyethylene (PE) bags from major retailers and one pure PE film. Consumer PE bags contained 15–36% inorganic additives, primarily calcium carbonate (13–34%) and titanium dioxide (TiO2; 1–2%). Sunlight exposure consistently increased production of dissolved organic carbon (DOC) relative to leaching in the dark (3- to 80-fold). All consumer PE bags produced more DOC during sunlight exposure than the pure PE (1.2- to 2.0-fold). The DOC leached after sunlight exposure increasingly reflected the 13C and 14C isotopic composition of the plastic. Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry revealed that sunlight exposure substantially increased the number of DOC formulas detected (1.1- to 50-fold). TiO2-containing bags photochemically degraded into the most compositionally similar DOC, with 68–94% of photoproduced formulas in common with at least one other TiO2-containing bag. Conversely, only 28% of photoproduced formulas from the pure PE were detected in photoproduced DOC from the consumer PE. Overall, these findings suggest that plastic formulation, especially TiO2, plays a determining role in the amount and composition of DOC generated by sunlight. Consequently, studies on pure, unweathered polymers may not accurately represent the fates and impacts of the plastics entering the ocean.
    Description: Funding was provided by the Seaver Institute, the Gerstner Family Foundation, Woods Hole Oceanographic Institution, and the National Science Foundation Graduate Research Fellowship Program (A.N.W.). The Ion Cyclotron Resonance user facility at the National High Magnetic Field Laboratory is supported by the National Science Foundation Division of Chemistry and Division of Materials Research through DMR-1644779 and the State of Florida.
    Keywords: Plastic pollution ; Marine debris ; Additives ; Dissolved organic carbon ; Photochemical oxidation ; FT-ICR-MS ; Titanium dioxide
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-06-08
    Description: Contact interaction of two bodies can be modeled using the penalty function approach while its accuracy and robustness are directly associated with the geometry of contact bodies. Particularly, in the research fields of rock mechanics, we need to treat polygonal shapes such as mineral grains/particles at a mesoscale and rock blocks at a macroscale. The irregular shapes (e.g., polygons with small angles or small edges) pose challenges to traditional contact solution approach in terms of algorithmic robustness and complexity. This paper proposed a robust potential-based penalty function approach to solve contact of polygonal particles/block. An improved potential function is proposed considering irregular polygonal shapes. A contact detection procedure based on the entrance block concept is presented, followed by a numerical integral algorithm to compute the contact force. The proposed contact detection approach is implemented into discontinuous deformation analysis with an explicit formulation. The accuracy and robustness of the proposed contact detection approach are verified by benchmarking examples. The potential of the proposed approach in analysis of kinetic behavior of complex polygonal block systems is shown by two application examples. It can be applied in any discontinuous computation models using stepwise contact force-based solution procedures.
    Description: Alexander von Humboldt Foundation
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Keywords: ddc:550.724 ; Block system ; Explicit discontinuous deformation analysis ; Irregular polygon ; Penalty function method ; Potential contact force
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-06-08
    Description: The water retention curve (WRC), representing an important key for the modelling of hydro-mechanical behaviour of unsaturated soils, is still not fully understood, because it originates from microscopic hydraulic and capillary phenomena. Furthermore, its experimental measurement, especially for cyclic drainage and imbibition paths, is challenging and time-consuming. In this contribution, a recently developed low-cost easy-to-use miniature testing device for the investigation of the WRC of unsaturated granular soils, such as coarse-grained sand and a packing of glass beads, is presented. With the help of the new device, that can be controlled by a Raspberry Pi single-board computer, the hysteretic WRC can be investigated in a conventional macroscopic approach by plotting the macroscopic specimen degree of saturation versus measured matric suction. The test set-up allows an automatic measurement of the WRC which is measured continuously following a programmed test procedure. In addition to the technical realisation of the new device, this contribution focuses on macroscopic results of water retention tests. Moreover, the testing device has been designed in a miniaturised size, in order to obtain microscopic insights into the phase distribution during cyclic drainage and imbibition paths with the help of computed tomography in future applications.
    Description: German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)
    Keywords: ddc:550.724 ; Single-board computers ; Suction measurement ; Unsaturated granular soils ; Water retention behaviour ; X-ray computed tomography
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-06-08
    Description: The knowledge about thermo-mechanical properties of granite is still limited to some extent. Individual measurements are necessary to obtain reliable properties for specific granite types. A reliable numerical model of thermal cracking behaviours of granite exposed to extreme high temperatures (e.g. 800–1000 °C) is missing. In this study, the impact of temperature up to 1000 °C on physical, mechanical, and thermal properties as well as thermo-mechanical coupled behaviour of Eibenstock granite was investigated by laboratory testing and numerical simulations. The physical properties including mineral composition, density, P-wave velocity, and open porosity are measured to be temperature dependent. Uniaxial compression and Brazilian tests were carried out to measure uniaxial compressive strength (UCS), Young’s modulus, stress–strain relationship, and tensile strength of Eibenstock granite before and after thermal treatment, respectively. Thermal properties including specific heat, thermal conductivity, thermal diffusivity, and linear thermal expansion coefficient are also measured and found to be temperature dependent, especially the expansion coefficient which shows a steep increase around 573 °C as well as at 870 °C. The numerical simulation code FLAC3D was used to develop a numerical scheme to simulate the thermal-induced damage of granite at high temperatures. Statistical methods combined with real mineral composition were used to characterize the heterogeneity of granite. The numerical model is featured with reliable temperature-dependent parameters obtained from laboratory tests. It can well reproduce the laboratory results in form of thermal-induced micro- and macrocracks, as well as the stress–strain behaviour and the final failure pattern of Eibenstock granite after elevated temperatures up to 1000 °C. The simulation results also reveal that the thermal-induced microcracks are randomly distributed across the whole sample. Although most thermal-induced damages are tensile failures, shear failure begins to develop quickly after 500 °C. The obvious UCS reduction in granite due to heating is mainly caused by the increase in shear failure. The simulation also shows that the dominant impact of α–β quartz transition is widening pre-existing cracks rather than the formation of new microcracks.
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Keywords: ddc:550.724 ; Granite property ; Heterogeneity ; Numerical simulation ; Thermo-mechanical behaviour ; Thermal damage
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-06-20
    Description: Aufgrund deutlich erhöhter Wärmebedarfsdichten urbaner Räume besteht in besonderem Maße hier die Möglichkeit und Erfordernis, durch eine nachhaltige Wärmeversorgung und saisonale Wärmespeicherung im geologischen Untergrund einen wesentlichen Beitrag zu den national und international gesetzten Klimaschutzzielen zu liefern. Eine effiziente Möglichkeit zur Wärmegewinnung und -speicherung bieten hierfür Erdwärmesonden, die jedoch aus Gründen des vorbeugenden Grundwasserschutzes in Bereichen der Trinkwassernutzung heutzutage meist nicht oder nur beschränkt genehmigt werden. Numerische Simulationen einer Erdwärmesondenleckage für Randbedingungen eines zur Trinkwassergewinnung genutzten norddeutschen Aquifers auf Grundlage von aufgearbeiteten stoffspezifischen Abbauratenkonstanten zeigen, dass Grenzwerte für die meisten handelsüblichen Wärmeträgerfluid-Inhaltsstoffe bereits bei einem Abstand von nur 100 m zwischen Erdwärmesonde und Trinkwasserentnahme aufgrund starker Verdünnung und mikrobiellen Abbaus mit einem Faktor 〉 10 unterschritten werden. Vor dem Hintergrund dieser Ergebnisse und angesichts der Zielsetzung einer Reduktion fossiler Primärenergiequellen um 80–95 % bis 2050, erscheinen pauschale Abstandsvorgaben (von zurzeit 〉 1000 m) daher zumindest hinsichtlich der Trinkwassergefährdung durch Erdwärmesondenleckagen diskussionswürdig.
    Description: Christian-Albrechts-Universität zu Kiel (3094)
    Keywords: ddc:549 ; Borehole heat exchanger ; Heat transfer fluids ; Additives ; Groundwater ; Risk assessment
    Language: German
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-04-27
    Keywords: perovskiteferroelectricpowder neutron diffraction
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-03-09
    Description: The perovskite Li0.2Na0.8NbO3 is shown, by powder neutron diffraction, to display a unique sequence of phase transitions at elevated temperature. The ambient temperature polar phase (rhombohedral, space group R3c) transforms via a first-order transition to a polar tetragonal phase (space group P42mc) in the region 150–300°C; these two phases correspond to Glazer tilt systems a−a−a− and a+a+c−, respectively. At 500°C a ferroelectric–paraelectric transition takes place from P42mc to P42/nmc, retaining the a+a+c− tilt. Transformation to a single-tilt system, a0a0c+ (space group P4/mbm), occurs at 750°C, with the final transition to the aristotype cubic phase at 850°C. The P42mc and P42/nmc phases have each been seen only once and twice each, respectively, in perovskite crystallography, in each case in compositions prepared at high pressure.
    Keywords: perovskiteferroelectricpowder neutron diffraction
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...