ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes  (5)
  • Geological Society of America  (2)
  • Nature Publishing Group  (2)
  • Clarendon Press  (1)
  • American Chemical Society
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: Site 1201D of Ocean Drilling Program Leg 195 recovered basaltic and volcaniclastic units from the West Philippine Basin that document the earliest history of the Izu–Bonin–Mariana convergent margin. The stratigraphic section recovered at Site 1201D includes 90 m of pillow basalts, representing the West Philippine Basin basement, overlain by 459 m of volcaniclastic turbidites that formed from detritus shed from the Eocene–Oligocene proto-Izu–Bonin–Mariana island arc. Basement basalts are normal mid-ocean ridge basalt (N-MORB), based on their abundances of immobile trace elements, although fluid-mobile elements are enriched, similar to back-arc basin basalts (BABB). Sr, Nd, Pb and Hf isotopic compositions of the basement basalts are similar to those of basalts from other West Philippine Basin locations, and show an overall Indian Ocean MORB signature, marked by high 208Pb/204Pb for a given 206Pb/204Pb and high 176Hf/177Hf for a given 143Nd/ 144Nd. Trace element and isotopic differences between the basement and overlying arc-derived volcaniclastics are best explained by the addition of subducted sediment or sediment melt, together with hydrous fluids from subducted oceanic crust, into the mantle source of the arc lavas. In contrast to tectonic models suggesting that a mantle hotspot was a source of heat for the early Izu–Bonin–Mariana arc magmatism, the geochemical data do not support an enriched, ocean island basalt (OIB)-like source for either the basement basalts or the arc volcanic section.
    Description: Published
    Description: 1-23
    Description: partially_open
    Keywords: Back-arc basalts ; Izu–Bonin–Marianas ; Philippine Sea ; Subduction initiation ; Ocean Drilling Program Leg 195 ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 480 bytes
    Format: 1776547 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The Archean western Superior province in Canada is the type area for proposed Archean plate tectonics. Seismic images from this region provide direct evidence for assembly of the craton by terrane accretion and for a large slab of remnant oceanic crust preserved at the base of the crust. This slab, with inferred garnet amphibolite composition, adds a critical piece of evidence to previous suggestions that Archean subduction was at a shallow angle and that some Neoarchean tonalite-trondhjemite-granodiorite suites, distinct from most modern-day suprasubduction magmas, are melts primarily derived directly from subducted slabs.
    Description: LITHOPROBE, Queen's University, Geological Survey of Canada
    Description: Published
    Description: 997–1000;
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Archean ; teconics ; seismic ; subduction ; accretion ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Data from high-density seismic networks deployed between 2000 and 2007 in the north-central Apennines (Italy) yield unprecedented images of an active orogenic wedge. Earthquake foci from the northern Apennines define a Benioff zone deepening westward from the Adriatic foreland down to ~60 km depth below the chain. The seismicity shows that only the lowermost ~10 km of the Adriatic foreland crust is subducted, whereas the uppermost ~20 km is incorporated into the orogenic wedge. Farther west, an aseismic mantle with markedly negative P-wave-velocity (Vp) anomalies is interpreted as asthenosphere flowing toward an Adriatic slab in retrograde motion. Three crustal layers with different Vp and seismicity characteristics are imaged below the northern Apennines: an uppermost 10-km-thick fast layer affected by extensional faulting, a slow layer with diffuse seismicity down to ~15 km depth, and a lowermost fast and aseismic layer resting directly above the asthenosphere. We interpret the latter layer as having formed by anhydrous crust undergoing granulitization, whereas trapped CO2 (either from the underlying granulites or from the subducting Adriatic crust) is inferred to have been responsible for both low Vp and diffuse seismicity in the middle crust. Trapped CO2 is released along the easternmost normal fault systems breaking the Apennine upper crust, consistent with geochemical and seismotectonic evidence. Compressive earthquakes at 20–25 km depth along the external front suggest offscraping of the subducting foreland crust and show that asthenospheric flow represents the primary source of ongoing shortening along the belt front.
    Description: Published
    Description: 95-104
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: N/A or not JCR
    Description: reserved
    Keywords: Northern Apennines ; subduction ; orogenic wedge ; seismology ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The MW 8.8 mega-thrust earthquake and tsunami that occurred on February 27, 2010, offshore Maule region, Chile, was not unexpected. A clearly identified seismic gap existed in an area where tectonic loading has been accumulating since the great 1835 earthquake experienced and described by Darwin during the voyage of the Beagle. Here we jointly invert tsunami and geodetic data (InSAR, GPS, land-level changes), to derive a robust model for the co-seismic slip distribution and induced co-seismic stress changes, and compare them to past earthquakes and the pre-seismic locking distribution. We aim to assess if the Maule earthquake has filled the Darwin gap, decreasing the probability of a future shock . We find that the main slip patch is located to the north of the gap, overlapping the rupture zone of the MW 8.0 1928 earthquake, and that a secondary concentration of slip occurred to the south; the Darwin gap was only partially filled and a zone of high pre-seismic locking remains unbroken. This observation is not consistent with the assumption that distributions of seismic rupture might be correlated with pre-seismic locking, potentially allowing the anticipation of slip distributions in seismic gaps. Moreover, increased stress on this unbroken patch might have increased the probability of another major to great earthquake there in the near future.
    Description: Published
    Description: 173-177
    Description: 3.1. Fisica dei terremoti
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Source process ; Chile ; Tsunami ; Joint Inversion ; Seismic Gap ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The 2011 Tohoku-oki (Mw 9.1) earthquake is so far the best-observed megathrust rupture, which allowed the collection of unprecedented offshore data. The joint inversion of tsunami waveforms (DART buoys, bottom pressure sensors, coastal wave gauges, and GPS-buoys) and static geodetic data (onshore GPS, seafloor displacements obtained by a GPS/acoustic combination technique), allows us to retrieve the slip distribution on a non-planar fault. We show that the inclusion of near-source data is necessary to image the details of slip pattern (maximum slip ,48 m, up to ,35 m close to the Japan trench), which generated the large and shallow seafloor coseismic deformations and the devastating inundation of the Japanese coast. We investigate the relation between the spatial distribution of previously inferred interseismic coupling and coseismic slip and we highlight the importance of seafloor geodetic measurements to constrain the interseismic coupling, which is one of the key-elements for long-term earthquake and tsunami hazard assessment.
    Description: Published
    Description: 385
    Description: 3.1. Fisica dei terremoti
    Description: N/A or not JCR
    Description: restricted
    Keywords: Tohoku ; Subduction ; Tsunami ; Inverse problem ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...