ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations  (3)
  • 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods  (2)
  • Blackwell Publishing  (3)
  • Blackwell Publishing Ltd  (2)
  • American Chemical Society
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: The tectonic deformation of the Lipari-Vulcano complex, one of the most important active volcanic areas of Mediterranean region, is studied here through the analysis of ten years (1996-2006) of GPS data from both 3 permanent and 13 non-permanent stations. This area can be considered crucial for the understanding of the Eurasia-Africa plates interaction in the Mediterranean area, and, in general, this work emphasize a methodological approach, already applied in other areas worldwide (e.g. Shen et al., 1996, El-Fiki and Kato, 1999) where geodetic data and strain parameters maps of critical areas can help to improve our understanding of their geodynamical aspects. In this framework, this study is aimed at providing a kinematic deformation model on the basis of the dense geodetically estimated velocities of the Lipari-Vulcano complex. In particular, the observed deformation pattern can be described by a mix between 1) the main N-S regional compression and 2) a NNE-SSW compression with a small right-lateral strike slip component acting along a tectonic structure N°40W trending located between the two islands. This pattern was inspected through a simplified synthetic model.
    Description: This research has benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: 370–377
    Description: 1.9. TTC - Rete GPS nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: GPS ; Aeolian Islands ; strain ; modelling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We analysed elevation changes induced by the 1997–1998 Umbria-Marche, central Apennines (Italy) earthquakes. We employed data from a first-order geodetic levelling line measured in 1951, 1992 and 1998. The line bears a record of pre-seismic and coseismic strains associated with the causative fault of the 1997 September 26, 09:40 mainshock (Mw = 6.0). A first level analysis performed under the assumption of slip homogeneity of coseismic slip shows misfits that cannot be reduced simply by altering the fault size and geometry. A more detailed analysis based on a distribution of coseismic slip obtained from broad-band seismograms provides a better fit and is in agreement with 1951–1992 elevation changes interpreted as precursory slip by previous investigators. The levelling data sets new constraints on the location, extent, dip and depth of the fault, in full agreement with seismological evidence and images from SAR interferometry. The data show no evidence for slip in the uppermost 3 km of the crust, suggesting that a major and widely recognized normal fault that exists in the area is no longer active and showing a tendency of present tectonic strains to revert the current topographic setting.
    Description: Published
    Description: 819-829
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: earthquakes ; fault slip ; geodesy ; normal faulting ; Umbria-Marche ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We propose a two-dimensional, non-linear method for the inversion of reflected/ converted traveltimes and waveform semblance designed to obtain the location and morphology of seismic reflectors in a lateral heterogeneous medium and in any source-to-receiver acquisition lay-out. This method uses a scheme of non-linear optimization for the determination of the interface parameters where the calculation of the traveltimes is carried out using a finite-difference solver of the Eikonal equation, assuming an a priori known background velocity model. For the search for the optimal interface model, we used a multiscale approach and the genetic algorithm global optimization technique. During the initial stages of inversion, we used the arrival times of the reflection phase to retrieve the interface model that is defined by a small number of parameters. In the successive steps, the inversion is based on the optimization of the semblance value determined along the calculated traveltime curves. Errors in the final model parameters and the criteria for the choice of the best-fit model are also estimated from the shape of the semblance function in the model parameter space. The method is tested and validated on a synthetic dataset that simulates the acquisition of reflection data in a complex volcanic structure. This study shows that the proposed inversion approach is a valid tool for geophysical investigations in complex geological environments, in order to obtain the morphology and positions of embedded discontinuities.
    Description: Published
    Description: 527–540
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: non-linear method ; reflected/ converted traveltimes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We present an improved evaluation of the current strain and stress fields in Southern Apennines (Italy) obtained through a careful analysis of geodetic, seismological and borehole data. In particular, our analysis provides an updated comparison between the accrued strain recorded by geodetic data, and the strain released by seismic activity in a region hit by destructive historical earthquakes. To this end, we have used 9 years of GPS observations (2001-2010) from a dense network of permanent stations, a dataset of 73 well constrained stress indicators (borehole breakouts and focal mechanisms of moderate to large earthquakes), and published estimations of the geological strain accommodated by active faults in the region. Although geodetic data are generally consistent with seismic and geologic information, previously unknown features of the current deformation in southern Italy emerge from this analysis. The newly obtained GPS velocity field supports the well-established notion of a dominant NE-SW-oriented extension concentrated in a ~50 km wide belt along the topographic relief of the Apennines, as outlined by the distribution of seismogenic normal faults. Geodetic deformation is, however, non uniform along the belt, with two patches of higher strain-rate and shear stress accumulation in the north (Matese Mountains) and in the south (Irpinia area). Low geodetic strain-rates are found in the Bradano basin and Apulia plateau to the east. Along the Ionian Sea margin of southern Italy, in southern Apulia and eastern Basilicata and Calabria, geodetic velocities indicate NW-SE extension which is consistent with active shallow-crustal gravitational motion documented by geological studies. In the west, along the Tyrrhenian margin of the Campania region, the tectonic geodetic field is disturbed by volcanic processes. Comparison between the magnitude of the geodetic and the seismic strain-rates (computed using a long historical seismicity catalogue) allow detecting areas of high correlation, particularly along the axis of the mountain chain, indicating that most of the geodetic strain is released by earthquakes. This relation does not hold for the instrumental seismic catalogue, as a consequence of the limited time span covered by instrumental data. In other areas (e.g. Murge plateau in central Apulia), where seismicity is very low or absent, the yet appreciable geodetic deformation might be accommodated in aseismic mode. Overall, the excellent match between the stress and the strain-rate directions in much of the Apennines indicates that both earthquakes and ground deformation patterns are driven by the same crustal forces.
    Description: Published
    Description: 1270-1282
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Satellite geodesy ; Plate motions ; Neotectonics ; Europe ; Apennines ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Experimental and theoretical studies have shown that, due to the magma/gas dynamics in the upper part of a volcano’s plumbing system, gravity changes can develop over periods between a few tens of seconds and several hours. The mass transport, implied by certain fast-evolving volcanic processes, also constitute the source mechanism of seismic waves with frequencies over the lower limit of the seismic band. These seismic waves could affect the measuring system of spring gravimeters, that are increasingly used as continuously running devices to monitor and study active volcanoes. As a consequence, under some circumstances, the signal from a continuously running spring gravimeter will be the combination of the gravity field component and the inertial acceleration component, the latter due to the ground motion. In such cases, the inertial acceleration must be separated from the gravity signal to assess the amount of mass redistributed during the studied process. To achieve this separation, the frequency response curve of the spring gravimeter to inertial accelerations must be calculated, since it is not supplied by manufacturers. In this paper, we present a method to retrieve the above curve, using simultaneous recordings during the transit of teleseismic waves, of a LaCoste & Romberg D gravimeter and a Nanometrics Trillium 40 broadband seismometer, whose frequency response curve to ground acceleration is known a-priori. The use of teleseismic waves is particularly useful for our purpose since teleseisms are not associated with a local mass redistribution; the gravimeter will thus be affected only by the ground motion, making the above calculation possible. Our results show that, because of the instrumental damping, the effect of the inertial acceleration is reduced in the output signal from the gravimeter to 0.5 and 0.1 of its original value, at frequencies between 0.02 and 0.07 Hz, respectively. The robustness of the calculated frequency response curve is proven using independent simultaneous signals from gravimeter and broadband seismometer.
    Description: Published
    Description: 772-780
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Time-series analysis; Fourier analysis; Time variable gravity; Volcano seismology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...