ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (7)
  • Genetics
  • Palaeoclimate
  • Nature Publishing Group  (3)
  • Frontiers Media  (2)
  • American Chemical Society  (1)
  • Azov Sea Research Fisheries Institute (AzNIIRKH)  (1)
  • Public Library of Science (PLoS)
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 3 (2013): 2802, doi:10.1038/srep02802.
    Beschreibung: It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with ‘deep-sea’ and ‘cold-water’ corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.
    Schlagwort(e): Ecosystem ecology ; Biodiversity ; Genetics ; Metabolism
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Format: application/msword
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Marine Science 5 (2018): 158, doi:10.3389/fmars.2018.00158.
    Beschreibung: In autumn 2015, several sources reported observations of large amounts of gelatinous material in a large north Norwegian fjord system, either caught when trawling for other organisms or fouling fishing gear. The responsible organism was identified as a physonect siphonophore, Nanomia cara, while a ctenophore, Beroe cucumis, and a hydromedusa, Modeeria rotunda, were also registered in high abundances on a couple of occasions. To document the phenomena, we have compiled a variety of data from concurrent fisheries surveys and local fishermen, including physical samples, trawl catch, and acoustic data, photo and video evidence, and environmental data. Because of the gas-filled pneumatophore, characteristic for these types of siphonophores, acoustics provided detailed and unique insight to the horizontal and vertical distribution and potential abundances (~0.2–20 colonies·m−3) of N. cara with the highest concentrations observed in the near bottom region at ~320 m depth in the study area. This suggests that these animals were retained and accumulated in the deep basins of the fjord system possibly blooming here because of favorable environmental conditions and potentially higher prey availability compared to the shallower shelf areas to the north. Few cues as to the origin and onset of the bloom were found, but it may have originated from locally resident siphonophores. The characteristics of the deep-water masses in the fjord basins were different compared to the deep water outside the fjord system, suggesting no recent deep-water import to the fjords. However, water-masses containing siphonophores (not necessarily very abundant), may have been additionally introduced to the fjords at intermediate depths, with the animals subsequently trapped in the deeper fjord basins. The simultaneous observations of abundant siphonophores, hydromedusae, and ctenophores in the Lyngen-Kvænangen fjord system are intriguing, but difficult to provide a unified explanation for, as the organisms differ in their biology and ecology. Nanomia and Beroe spp. are holopelagic, while M. rotunda has a benthic hydroid stage. The species also have different trophic ecologies and dietary preferences. Only by combining information from acoustics, trawling, genetics, and local fishermen, were the identity, abundance, and the vertical and horizontal distribution of the physonect siphonophore, N. cara, established.
    Beschreibung: The work was funded by the Ministry of Fisheries and Coastal Affairs through the Institute of Marine Research (IMR), while the Research Council of Norway (RCN) is thanked for the financial support through the project The Arctic Ocean Ecosystem—(SI_ARCTIC, RCN 228896). AH was supported by the Norwegian Taxonony Initiative (NTI 70184233) and ForBio Research School funding (RCN 248799 and NTI 70184215).
    Schlagwort(e): Jellyfish bloom ; Genetics ; Acoustics ; Nanomia ; North Norwegian fjords ; Gelatinous zooplankton
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 6 (2016): 21728, doi:10.1038/srep21728
    Beschreibung: Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.
    Beschreibung: This research was supported by NSF Awards: OCE-1519578, OCE-1356708, BCS-1118340.
    Schlagwort(e): Climate-change impacts ; Forest ecology ; Ocean sciences ; Palaeoclimate
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    Azov Sea Research Fisheries Institute (AzNIIRKH) | Rostov-on-Don, Russia
    Publikationsdatum: 2021-05-19
    Beschreibung: One of the main tasks of modern genetics is the study of the genetic diversity of organisms of different taxonomic levels. Such genome studies can serve as a tool for solving problems associated with identifying the evolutionary mechanisms by which genetic diversity has emerged. Discussions are still ongoing on micro- and macroevolutionary processes that can lead to a variety of genes and taxonomic diversity in the species of the Prussian carp Carassius auratus gibelio Bloch. It should also be noted that these studies have started relatively recently, and many questions concerning the genetic research of carp are still open.
    Beschreibung: Одной из основных задач современной генетики является изучение генетического разнообразия организмов различного таксономического уровня. Такие исследования геномов могут послужить инструментом для решения проблем, связанных с выявлением эволюционных механизмов, с помощью которых появилось генетическое разнообразие. До сих пор ведутся дискуссии относительно микро- и макроэволюционных процессов, которые могут приводить к разнообразию генов и таксономическому разнообразию у видов серебряного карася Carassius auratus gibelio Bloch. Также нужно отметить то, что данные исследования начались относительно недавно, и многие вопросы, касающиеся генетических исследований карася, остаются открытыми.
    Beschreibung: Published
    Schlagwort(e): Carassius auratus gibelio ; Genetics ; Prussian carp ; Evolution ; Taxonomy
    Repository-Name: AquaDocs
    Materialart: Conference Material , Non Refereed
    Format: pp.228-232
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Capotondi, A., Jacox, M., Bowler, C., Kavanaugh, M., Lehodey, P., Barrie, D., Brodie, S., Chaffron, S., Cheng, W., Dias, D. F., Eveillard, D., Guidi, L., Iudicone, D., Lovenduski, N. S., Nye, J. A., Ortiz, I., Pirhalla, D., Buil, M. P., Saba, V., Sheridan, S., Siedlecki, S., Subramanian, A., de Vargas, C., Di Lorenzo, E., Doney, S. C., Hermann, A. J., Joyce, T., Merrifield, M., Miller, A. J., Not, F., & Pesant, S. Observational needs supporting marine ecosystems modeling and forecasting: from the global ocean to regional and coastal systems. Frontiers in Marine Science, 6, (2019): 623, doi:10.3389/fmars.2019.00623.
    Beschreibung: Many coastal areas host rich marine ecosystems and are also centers of economic activities, including fishing, shipping and recreation. Due to the socioeconomic and ecological importance of these areas, predicting relevant indicators of the ecosystem state on sub-seasonal to interannual timescales is gaining increasing attention. Depending on the application, forecasts may be sought for variables and indicators spanning physics (e.g., sea level, temperature, currents), chemistry (e.g., nutrients, oxygen, pH), and biology (from viruses to top predators). Many components of the marine ecosystem are known to be influenced by leading modes of climate variability, which provide a physical basis for predictability. However, prediction capabilities remain limited by the lack of a clear understanding of the physical and biological processes involved, as well as by insufficient observations for forecast initialization and verification. The situation is further complicated by the influence of climate change on ocean conditions along coastal areas, including sea level rise, increased stratification, and shoaling of oxygen minimum zones. Observations are thus vital to all aspects of marine forecasting: statistical and/or dynamical model development, forecast initialization, and forecast validation, each of which has different observational requirements, which may be also specific to the study region. Here, we use examples from United States (U.S.) coastal applications to identify and describe the key requirements for an observational network that is needed to facilitate improved process understanding, as well as for sustaining operational ecosystem forecasting. We also describe new holistic observational approaches, e.g., approaches based on acoustics, inspired by Tara Oceans or by landscape ecology, which have the potential to support and expand ecosystem modeling and forecasting activities by bridging global and local observations.
    Beschreibung: This study was supported by the NOAA’s Climate Program Office’s Modeling, Analysis, Predictions, and Projections (MAPP) Program through grants NA17OAR4310106, NA17OAR4310104, NA17OAR4310108, NA17OAR4310109, NA17OAR4310110, NA17OAR4310111, NA17OAR4310112, and NA17OAR4310113. This manuscript is a product of the NOAA/MAPP Marine Prediction Task Force. The Tara Oceans consortium acknowledges support from the CNRS Research Federation FR2022 Global Ocean Systems Ecology and Evolution, and OCEANOMICS (grant agreement ‘Investissement d’Avenir’ ANR-11-BTBR-0008). This is article number 95 of the Tara Oceans consortium. MK and SD acknowledge support from NASA grant NNX14AP62A “National Marine Sanctuaries as Sentinel Sites for a Demonstration Marine Biodiversity Observation Network (MBON)” funded under the National Ocean Partnership Program (NOPP RFP NOAA-NOS-IOOS-2014-2003803 in partnership between NOAA, BOEM, and NASA), and the NOAA Integrated Ocean Observing System (IOOS) Program Office. WC, IO, and AH acknowledge partial support from the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063, Contribution No. 2019-1029. This study received support from the European H2020 International Cooperation project MESOPP (Mesopelagic Southern Ocean Prey and Predators), grant agreement no. 692173.
    Schlagwort(e): Marine ecosystems ; Modeling and forecasting ; Seascapes ; Genetics ; Acoustics
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gosselin, K. M., Nelson, R. K., Spivak, A. C., Sylva, S. P., Van Mooy, B. A. S., Aeppli, C., Sharpless, C. M., O’Neil, G. W., Arrington, E. C., Reddy, C. M., & Valentine, D. L. Production of two highly abundant 2-methyl-branched fatty acids by blooms of the globally significant marine cyanobacteria Trichodesmium erythraeum. ACS Omega, 6(35), (2021): 22803–22810, https://doi.org/10.1021/acsomega.1c03196.
    Beschreibung: The bloom-forming cyanobacteria Trichodesmium contribute up to 30% to the total fixed nitrogen in the global oceans and thereby drive substantial productivity. On an expedition in the Gulf of Mexico, we observed and sampled surface slicks, some of which included dense blooms of Trichodesmium erythraeum. These bloom samples contained abundant and atypical free fatty acids, identified here as 2-methyldecanoic acid and 2-methyldodecanoic acid. The high abundance and unusual branching pattern of these compounds suggest that they may play a specific role in this globally important organism.
    Beschreibung: This work was funded with grants from the National Science Foundation grants OCE-1333148, OCE-1333162, and OCE-1756254 and the Woods Hole Oceanographic Institution (IR&D). GCxGC analysis made possible by WHOI’s Investment in Science Fund.
    Schlagwort(e): Lipids ; Alkyls ; Bacteria ; Genetics ; Chromatography
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 6 (2016): 29587, doi:10.1038/srep29587.
    Beschreibung: Interactions between climate, fire and CO2 are believed to play a crucial role in controlling the distributions of tropical woodlands and savannas, but our understanding of these processes is limited by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated record of vegetation, climate and fire from West Africa to examine the role of these interactions on tropical ecosystem stability. We find that increased aridity between 28–15 kyr B.P. led to the widespread expansion of tropical grasslands, but that frequent fires and low CO2 played a crucial role in stabilizing these ecosystems, even as humidity changed. This resulted in an unstable ecosystem state, which transitioned abruptly from grassland to woodlands as gradual changes in CO2 and fire shifted the balance in favor of woody plants. Since then, high atmospheric CO2 has stabilized tropical forests by promoting woody plant growth, despite increased aridity. Our results indicate that the interactions between climate, CO2 and fire can make tropical ecosystems more resilient to change, but that these systems are dynamically unstable and potentially susceptible to abrupt shifts between woodland and grassland dominated states in the future.
    Beschreibung: This work was supported by NSF grants EAR0601998, EAR0602355, AGS0402010, ATM0401908, ATM0214525, ATM0096232 and AGS1243125 and a Chevron Centennial Fellowship at the University of Texas at Austin awarded to T.M.S.
    Schlagwort(e): Climate-change ecology ; Palaeoclimate
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...