ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bacteria  (8)
  • Biogeochemistry  (7)
  • Submarine groundwater discharge  (4)
  • Genetics
  • Frontiers Media  (20)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Marine Science 5 (2018): 158, doi:10.3389/fmars.2018.00158.
    Description: In autumn 2015, several sources reported observations of large amounts of gelatinous material in a large north Norwegian fjord system, either caught when trawling for other organisms or fouling fishing gear. The responsible organism was identified as a physonect siphonophore, Nanomia cara, while a ctenophore, Beroe cucumis, and a hydromedusa, Modeeria rotunda, were also registered in high abundances on a couple of occasions. To document the phenomena, we have compiled a variety of data from concurrent fisheries surveys and local fishermen, including physical samples, trawl catch, and acoustic data, photo and video evidence, and environmental data. Because of the gas-filled pneumatophore, characteristic for these types of siphonophores, acoustics provided detailed and unique insight to the horizontal and vertical distribution and potential abundances (~0.2–20 colonies·m−3) of N. cara with the highest concentrations observed in the near bottom region at ~320 m depth in the study area. This suggests that these animals were retained and accumulated in the deep basins of the fjord system possibly blooming here because of favorable environmental conditions and potentially higher prey availability compared to the shallower shelf areas to the north. Few cues as to the origin and onset of the bloom were found, but it may have originated from locally resident siphonophores. The characteristics of the deep-water masses in the fjord basins were different compared to the deep water outside the fjord system, suggesting no recent deep-water import to the fjords. However, water-masses containing siphonophores (not necessarily very abundant), may have been additionally introduced to the fjords at intermediate depths, with the animals subsequently trapped in the deeper fjord basins. The simultaneous observations of abundant siphonophores, hydromedusae, and ctenophores in the Lyngen-Kvænangen fjord system are intriguing, but difficult to provide a unified explanation for, as the organisms differ in their biology and ecology. Nanomia and Beroe spp. are holopelagic, while M. rotunda has a benthic hydroid stage. The species also have different trophic ecologies and dietary preferences. Only by combining information from acoustics, trawling, genetics, and local fishermen, were the identity, abundance, and the vertical and horizontal distribution of the physonect siphonophore, N. cara, established.
    Description: The work was funded by the Ministry of Fisheries and Coastal Affairs through the Institute of Marine Research (IMR), while the Research Council of Norway (RCN) is thanked for the financial support through the project The Arctic Ocean Ecosystem—(SI_ARCTIC, RCN 228896). AH was supported by the Norwegian Taxonony Initiative (NTI 70184233) and ForBio Research School funding (RCN 248799 and NTI 70184215).
    Keywords: Jellyfish bloom ; Genetics ; Acoustics ; Nanomia ; North Norwegian fjords ; Gelatinous zooplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Beam, J. P., Becraft, E. D., Brown, J. M., Schulz, F., Jarett, J. K., Bezuidt, O., Poulton, N. J., Clark, K., Dunfield, P. F., Ravin, N. V., Spear, J. R., Hedlund, B. P., Kormas, K. A., Sievert, S. M., Elshahed, M. S., Barton, H. A., Stott, M. B., Eisen, J. A., Moser, D. P., Onstott, T. C., Woyke, T., & Stepanauskas, R. Ancestral absence of electron transport chains in Patescibacteria and DPANN. Frontiers in Microbiology, 11, (2020): 1848, doi:10.3389/fmicb.2020.01848.
    Description: Recent discoveries suggest that the candidate superphyla Patescibacteria and DPANN constitute a large fraction of the phylogenetic diversity of Bacteria and Archaea. Their small genomes and limited coding potential have been hypothesized to be ancestral adaptations to obligate symbiotic lifestyles. To test this hypothesis, we performed cell–cell association, genomic, and phylogenetic analyses on 4,829 individual cells of Bacteria and Archaea from 46 globally distributed surface and subsurface field samples. This confirmed the ubiquity and abundance of Patescibacteria and DPANN in subsurface environments, the small size of their genomes and cells, and the divergence of their gene content from other Bacteria and Archaea. Our analyses suggest that most Patescibacteria and DPANN in the studied subsurface environments do not form specific physical associations with other microorganisms. These data also suggest that their unusual genomic features and prevalent auxotrophies may be a result of ancestral, minimal cellular energy transduction mechanisms that lack respiration, thus relying solely on fermentation for energy conservation.
    Description: This work was funded by the USA National Science Foundation grants 1441717, 1826734, and 1335810 (to RS); and 1460861 (REU site at Bigelow Laboratory for Ocean Sciences). RS was also supported by the Simons Foundation grant 510023. TW, FS, and JJ were funded by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility supported under Contract No. DE-AC02-05CH11231. NR group was funded by the Russian Science Foundation (grant 19-14-00245). SS was funded by USA National Science Foundation grants OCE-0452333 and OCE-1136727. BH was funded by NASA Exobiology grant 80NSSC17K0548.
    Keywords: Bacteria ; Archaea ; evolution ; genomics fermentation ; respiration ; oxidoreductases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in O'Brien, F. J. M., Almaraz, M., Foster, M. A., Hill, A. F., Huber, D. P., King, E. K., Langford, H., Lowe, M., Mickan, B. S., Miller, V. S., Moore, O. W., Mathes, F., Gleeson, D., & Leopold, M. Soil salinity and pH drive soil bacterial community composition and diversity along a lateritic slope in the Avon River critical zone observatory, Western Australia. Frontiers in Microbiology, 10, (2019): 1486, doi:10.3389/fmicb.2019.01486.
    Description: Soils are crucial in regulating ecosystem processes, such as nutrient cycling, and supporting plant growth. To a large extent, these functions are carried out by highly diverse and dynamic soil microbiomes that are in turn governed by numerous environmental factors including weathering profile and vegetation. In this study, we investigate geophysical and vegetation effects on the microbial communities of iron-rich lateritic soils in the highly weathered landscapes of Western Australia (WA). The study site was a lateritic hillslope in southwestern Australia, where gradual erosion of the duricrust has resulted in the exposure of the different weathering zones. High-throughput amplicon sequencing of the 16S rRNA gene was used to investigate soil bacterial community diversity, composition and functioning. We predicted that shifts in the microbial community would reflect variations in certain edaphic properties associated with the different layers of the lateritic profile and vegetation cover. Our results supported this hypothesis, with electrical conductivity, pH and clay content having the strongest correlation with beta diversity, and many of the differentially abundant taxa belonging to the phyla Actinobacteria and Proteobacteria. Soil water repellence, which is associated with Eucalyptus vegetation, also affected beta diversity. This enhanced understanding of the natural system could help to improve future crop management in WA since the physicochemical properties of the agricultural soils in this region are inherited from laterites via the weathering and pedogenesis processes.
    Description: This work was funded by the WUN and the individual authors’ institutions. MA and MF were funded by the Critical Zone Observatory Program, NSF ICER 1445346.
    Keywords: Soil microbial ; Community ; Bacteria ; Laterite ; Critical zone ; Western Australia
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bejannin, S., Tamborski, J. J., van Beek, P., Souhaut, M., Stieglitz, T., Radakovitch, O., Claude, C., Conan, P., Pujo-Pay, M., Crispi, O., Le Roy, E., & Estournel, C. Nutrient fluxes associated with submarine groundwater discharge from karstic coastal aquifers (Côte Bleue, French Mediterranean coastline). Frontiers in Environmental Science, 7, (2020): 205, doi: 10.3389/fenvs.2019.00205.
    Description: Determination of submarine groundwater discharge (SGD) from karstic coastal aquifers is important to constrain hydrological and biogeochemical cycles. However, SGD quantification using commonly employed geochemical methods can be difficult to constrain under the presence of large riverine inputs, and is further complicated by the determination of the karstic groundwater endmember. Here, we investigated a coastal region where groundwater discharges from a karstic aquifer system using airborne thermal infrared mapping and geochemical sampling conducted along offshore transects. We report radium data (223Ra, 224Ra, 228Ra) that we used to derive fluxes (water, nutrients) associated with terrestrial groundwater discharge and/or seawater circulation through the nearshore permeable sediments and coastal aquifer. Field work was conducted at different periods of the year to study the temporal variability of the chemical fluxes. Offshore transects of 223Ra and 224Ra were used to derive horizontal eddy diffusivity coefficients that were subsequently combined with surface water nutrient gradients (NO2− + NO3−, DSi) to determine the net nutrient fluxes from SGD. The estimated DSi and (NO2− + NO3−) fluxes are 6.2 ± 5.0 *103 and 4.0 ± 2.0 *103 mol d−1 per km of coastline, respectively. We attempted to further constrain these SGD fluxes by combining horizontal eddy diffusivity and 228Ra gradients. However, SGD endmember selection in this area (terrestrial groundwater discharge vs. porewater) adds further uncertainty to the flux calculation and thus prevented us from calculating a reliable flux using this latter method. Additionally, the relatively long half-life of 228Ra (5.75 y) makes it sensitive to specific circulation patterns in this coastal region, including sporadic intrusions of Rhône river waters that impact both the 228Ra and nutrient surface water distributions. We show that SGD nutrient fluxes locally reach up to 20 times the nutrient fluxes from a small river (Huveaune River). On a regional scale, DSi fluxes driven by SGD vary between 0.1 and 1.4% of the DSi inputs of the Rhône River, while the (NO2− + NO3−) fluxes driven by SGD on this 22 km long coastline are between 0.1 and 0.3% of the Rhône River inputs, the largest river that discharges into the Mediterranean Sea. Interestingly, the nutrient fluxes reported here are similar in magnitude compared with the fluxes quantified along the sandy beach of La Franqui, in the western Gulf of Lions (Tamborski et al., 2018), despite the different lithology of the two areas (karst systems vs. unconsolidated sediment).
    Description: The Ph.D. thesis fellowship of SB and the postdoctoral fellowship of JT were supported by FEDER funded by Europe and Région Occitanie Pyrénées-Méditerranée (SELECT project). This project was funded by (i) ANR-MED-SGD (ANR-15-CE01-0004; PB) and (ii) CNES for funding the airborne TIR images acquired in 2012 as part of the Geomether project (PI: Pascal Allemand, PB being responsible for the acquisition of TIR images in that project).
    Keywords: Submarine groundwater discharge ; Mediterranean sea ; Radium isotopes ; Thermal infrared remote sensing ; Nutrient fluxes ; GEOTRACES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seyler, L. M., Tuorto, S., McGuinness, L. R., Gong, D., & Kerkhof, L. J. Bacterial and archaeal specific-predation in the North Atlantic Basin. Frontiers in Marine Science, 6, (2019): 555, doi:10.3389/fmars.2019.00555.
    Description: Stable isotope probing (SIP) was used to track prokaryotic and eukaryotic carbon uptake along a meridional transect (Long. 52°W) in the North Atlantic to assess if 13C-resource partitioning between bacteria and archaea and 13C-labeled eukaryotic predators could be detected. One-liter SIP microcosms were amended with 13C-acetate or 13C-urea and incubated for 48 h. Our data indicated archaea often outcompeted bacteria for 13C-urea while both archaea and bacteria could incorporate 13C-acetate. This 13C label could also be tracked into eukaryotic microbes. The largest number of 13C-labeled eukaryotic OTUs, and the greatest percentage of eukaryotic 13C signal, were observed in conjunction with both archaeal and bacterial 13C incorporation, suggesting that most eukaryotic predators do not distinguish between archaeal and bacterial prey. However, other 13C-eukaryotic OTUs were exclusively associated with either 13C-archaeal or 13C-bacterial OTUs. These archaeal-specific and bacterial-specific 13C-eukaryotic OTUs were related to known bactivorous predators including Ancyromonas, Amastigomonas, Cafeteria, and Caecitellus. Our SIP findings suggest both resource partitioning between bacteria and TACK (Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota) archaea and selective predation by eukaryotic predators. Determining the equalizing mechanisms for co-existence in the marine environment can help map predator/prey interactions to better estimate carbon flow in the deep ocean.
    Description: This research was made possible through the support of the U.S Global Ocean Carbon and Repeat Hydrography Program and NSF Ocean Technology and Interdisciplinary Program grant (#1131022) to LK.
    Keywords: Archaea ; Bacteria ; Predation ; Competition ; Stable isotope probing ; Deep ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Capotondi, A., Jacox, M., Bowler, C., Kavanaugh, M., Lehodey, P., Barrie, D., Brodie, S., Chaffron, S., Cheng, W., Dias, D. F., Eveillard, D., Guidi, L., Iudicone, D., Lovenduski, N. S., Nye, J. A., Ortiz, I., Pirhalla, D., Buil, M. P., Saba, V., Sheridan, S., Siedlecki, S., Subramanian, A., de Vargas, C., Di Lorenzo, E., Doney, S. C., Hermann, A. J., Joyce, T., Merrifield, M., Miller, A. J., Not, F., & Pesant, S. Observational needs supporting marine ecosystems modeling and forecasting: from the global ocean to regional and coastal systems. Frontiers in Marine Science, 6, (2019): 623, doi:10.3389/fmars.2019.00623.
    Description: Many coastal areas host rich marine ecosystems and are also centers of economic activities, including fishing, shipping and recreation. Due to the socioeconomic and ecological importance of these areas, predicting relevant indicators of the ecosystem state on sub-seasonal to interannual timescales is gaining increasing attention. Depending on the application, forecasts may be sought for variables and indicators spanning physics (e.g., sea level, temperature, currents), chemistry (e.g., nutrients, oxygen, pH), and biology (from viruses to top predators). Many components of the marine ecosystem are known to be influenced by leading modes of climate variability, which provide a physical basis for predictability. However, prediction capabilities remain limited by the lack of a clear understanding of the physical and biological processes involved, as well as by insufficient observations for forecast initialization and verification. The situation is further complicated by the influence of climate change on ocean conditions along coastal areas, including sea level rise, increased stratification, and shoaling of oxygen minimum zones. Observations are thus vital to all aspects of marine forecasting: statistical and/or dynamical model development, forecast initialization, and forecast validation, each of which has different observational requirements, which may be also specific to the study region. Here, we use examples from United States (U.S.) coastal applications to identify and describe the key requirements for an observational network that is needed to facilitate improved process understanding, as well as for sustaining operational ecosystem forecasting. We also describe new holistic observational approaches, e.g., approaches based on acoustics, inspired by Tara Oceans or by landscape ecology, which have the potential to support and expand ecosystem modeling and forecasting activities by bridging global and local observations.
    Description: This study was supported by the NOAA’s Climate Program Office’s Modeling, Analysis, Predictions, and Projections (MAPP) Program through grants NA17OAR4310106, NA17OAR4310104, NA17OAR4310108, NA17OAR4310109, NA17OAR4310110, NA17OAR4310111, NA17OAR4310112, and NA17OAR4310113. This manuscript is a product of the NOAA/MAPP Marine Prediction Task Force. The Tara Oceans consortium acknowledges support from the CNRS Research Federation FR2022 Global Ocean Systems Ecology and Evolution, and OCEANOMICS (grant agreement ‘Investissement d’Avenir’ ANR-11-BTBR-0008). This is article number 95 of the Tara Oceans consortium. MK and SD acknowledge support from NASA grant NNX14AP62A “National Marine Sanctuaries as Sentinel Sites for a Demonstration Marine Biodiversity Observation Network (MBON)” funded under the National Ocean Partnership Program (NOPP RFP NOAA-NOS-IOOS-2014-2003803 in partnership between NOAA, BOEM, and NASA), and the NOAA Integrated Ocean Observing System (IOOS) Program Office. WC, IO, and AH acknowledge partial support from the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063, Contribution No. 2019-1029. This study received support from the European H2020 International Cooperation project MESOPP (Mesopelagic Southern Ocean Prey and Predators), grant agreement no. 692173.
    Keywords: Marine ecosystems ; Modeling and forecasting ; Seascapes ; Genetics ; Acoustics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tamborski, J., Brown, C., Bokuniewicz, H., Cochran, J. K., & Rasbury, E. T. Investigating boron isotopes for identifying nitrogen sources supplied by submarine groundwater discharge to coastal waters. Frontiers in Environmental Science, 8, (2020): 126, doi:10.3389/fenvs.2020.00126.
    Description: Stable isotopes of oxygen, nitrogen, and boron were used to identify the sources of nitrate (NO3–) in submarine groundwater discharge (SGD) into a large tidal estuary (Long Island Sound, NY, United States). Potential contaminants such as manure, septic waste and fertilizer overlap in δ15N and δ18O but have been shown to have distinctive δ11B in non-coastal settings. Two distinct subterranean estuaries were studied with different land-use up gradient, representative of (1) mixed medium-density residential housing and (2) agriculture. These sites have overlapping δ15N and δ18O measurements in NO3– and are unable to discriminate between different N sources. Boron isotopes and concentrations are measurably different between the two sites, with little overlap. The subterranean estuary impacted by mixed medium-density residential housing shows little correlation between δ11B and [B] or between δ11B and salinity, demonstrating that direct mixing relationships between fresh groundwater and seawater were unlikely to account for the variability. No two sources could adequately characterize the δ11B of this subterranean estuary. Groundwater N at this location should be derived from individual homeowner cesspools, although measured septic waste has much lower δ11B compared to the coastal groundwaters. This observation, with no trend in δ11B with [B] indicates multiple sources supply B to the coastal groundwaters. The agricultural subterranean estuary displayed a positive correlation between δ11B and [B] without any relationship with salinity. Binary mixing between sea spray and fertilizer can reasonably explain the distribution of B in the agricultural subterranean estuary. Results from this study demonstrate that δ11B can be used in combination with δ15N to trace sources of NO3– to the subterranean estuary if source endmember isotopic signatures are well-constrained, and if the influence of seawater on δ11B signatures can be minimized or easily quantified.
    Description: This research was funded by New York Sea Grant projects R/CMC-13 and R/CMC-13-NYCT. The MC-ICP-MS used for this work was funded through NSF-MRI 0959524.
    Keywords: Submarine groundwater discharge ; Boron ; Nitrogen ; Nitrate ; Fertilizer ; Wastewater ; Septic waste
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tamborski, J., Cochran, J. K., Bokuniewicz, H., Heilbrun, C., Garcia-Orellana, J., Rodellas, V., & Wilson, R. Radium mass balance sensitivity analysis for submarine groundwater discharge estimation in semi-enclosed basins: the case study of Long Island Sound. Frontiers in Environmental Science, 8, (2020): 108, doi:10.3389/fenvs.2020.00108.
    Description: Estimation of submarine groundwater discharge (SGD) to semi-enclosed basins by Ra isotope mass balance is herein assessed. We evaluate 224Ra, 226Ra, and 228Ra distributions in surface and bottom waters of Long Island Sound (CT-NY, United States) collected during spring 2009 and summer 2010. Surface water and bottom water Ra activities display an apparent seasonality, with greater activities during the summer. Long-lived Ra isotope mass balances are highly sensitive to boundary fluxes (water flux and Ra activity). Variation (50%) in the 224Ra, 226Ra, and 228Ra offshore seawater activity results in a 63–74% change in the basin-wide 226Ra SGD flux and a 58–60% change in the 228Ra SGD flux, but only a 4–9% change in the 224Ra SGD flux. This highlights the need to accurately constrain long-lived Ra activities in the inflowing and outflowing water, as well as water fluxes across boundaries. Short-lived Ra isotope mass balances are sensitive to internal Ra fluxes, including desorption from resuspended particles and inputs from sediment diffusion and bioturbation. A 50% increase in the sediment diffusive flux of 224Ra, 226Ra, and 228Ra results in a ∼30% decrease in the 224Ra SGD flux, but only a ∼6–10% decrease in the 226Ra and 228Ra SGD flux. When boundary mixing is uncertain, 224Ra is the preferred tracer of SGD if sediment contributions are adequately constrained. When boundary mixing is well-constrained, 226Ra and 228Ra are the preferred tracers of SGD, as sediment contributions become less important. A three-dimensional numerical model is used to constrain boundary mixing in Long Island Sound (LIS), with mean SGD fluxes of 1.2 ± 0.9 × 1013 L y–1 during spring 2009 and 3.3 ± 0.7 × 1013 L y–1 during summer 2010. The SGD flux to LIS during summer 2010 was one order of magnitude greater than the freshwater inflow from the Connecticut River. The maximum marine SGD-driven N flux is 14 ± 11 × 108 mol N y–1 and rivals the N load of the Connecticut River.
    Description: This project has been funded by New York Sea Grant projects (R/CCP-16 and R/CMC-12). This research is contributing to the ICTA-UAB Unit of Excellence “María de Maeztu” (MDM-2015-0552) and MERS (2017 SGR – 1588, Generalitat de Catalunya). VR acknowledges financial support from the Beatriu de Pinós postdoctoral program of the Catalan Government (2017-BP-00334).
    Keywords: Radium isotopes ; Submarine groundwater discharge ; Porewater exchange ; Nitrogen ; Long Island Sound
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Smith, A. R., Mueller, R., Fisk, M. R., & Colwell, F. S. Ancient metabolisms of a thermophilic subseafloor bacterium. Frontiers in Microbiology, 12, (2021): 764631, https://doi.org/10.3389/fmicb.2021.764631.
    Description: The ancient origins of metabolism may be rooted deep in oceanic crust, and these early metabolisms may have persisted in the habitable thermal anoxic aquifer where conditions remain similar to those when they first appeared. The Wood–Ljungdahl pathway for acetogenesis is a key early biosynthetic pathway with the potential to influence ocean chemistry and productivity, but its contemporary role in oceanic crust is not well established. Here, we describe the genome of a novel acetogen from a thermal suboceanic aquifer olivine biofilm in the basaltic crust of the Juan de Fuca Ridge (JdFR) whose genome suggests it may utilize an ancient chemosynthetic lifestyle. This organism encodes the genes for the complete canonical Wood–Ljungdahl pathway, but is potentially unable to use sulfate and certain organic carbon sources such as lipids and carbohydrates to supplement its energy requirements, unlike other known acetogens. Instead, this organism may use peptides and amino acids for energy or as organic carbon sources. Additionally, genes involved in surface adhesion, the import of metallic cations found in Fe-bearing minerals, and use of molecular hydrogen, a product of serpentinization reactions between water and olivine, are prevalent within the genome. These adaptations are likely a reflection of local environmental micro-niches, where cells are adapted to life in biofilms using ancient chemosynthetic metabolisms dependent on H2 and iron minerals. Since this organism is phylogenetically distinct from a related acetogenic group of Clostridiales, we propose it as a new species, Candidatus Acetocimmeria pyornia.
    Description: Metagenome sequencing was made possible by the Deep Carbon Observatory Census of Deep Life supported by the Alfred P. Sloan Foundation and was performed at the Marine Biological Laboratory (Woods Hole, MA, United States). This work was funded by NASA grant NNX08AO22G and a graduate fellowship from the NSF Center for Dark Energy Biosphere Investigations. The flow cells were funded under J0972A from the U.S. Science Support Program of Joint Oceanographic Institutions.
    Keywords: Metabolism ; Carbon fixation ; Acetogenesis ; Bacteria ; Seafloor ; Hydrogen ; Amino acid ; Clostridia
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-12-22
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Subhas, A., Marx, L., Reynolds, S., Flohr, A., Mawji, E., Brown, P., & Cael, B. Microbial ecosystem responses to alkalinity enhancement in the North Atlantic Subtropical Gyre. Frontiers in Climate, 4, (2022): 784997, https://doi.org/10.3389./fclim.2022.784997
    Description: In addition to reducing carbon dioxide (CO2) emissions, actively removing CO2 from the atmosphere is widely considered necessary to keep global warming well below 2°C. Ocean Alkalinity Enhancement (OAE) describes a suite of such CO2 removal processes that all involve enhancing the buffering capacity of seawater. In theory, OAE both stores carbon and offsets ocean acidification. In practice, the response of the marine biogeochemical system to OAE must be demonstrably negligible, or at least manageable, before it can be deployed at scale. We tested the OAE response of two natural seawater mixed layer microbial communities in the North Atlantic Subtropical Gyre, one at the Western gyre boundary, and one in the middle of the gyre. We conducted 4-day microcosm incubation experiments at sea, spiked with three increasing amounts of alkaline sodium salts and a 13C-bicarbonate tracer at constant pCO2. We then measured a suite of dissolved and particulate parameters to constrain the chemical and biological response to these additions. Microbial communities demonstrated occasionally measurable, but mostly negligible, responses to alkalinity enhancement. Neither site showed a significant increase in biologically produced CaCO3, even at extreme alkalinity loadings of +2,000 μmol kg−1. At the gyre boundary, alkalinity enhancement did not significantly impact net primary production rates. In contrast, net primary production in the central gyre decreased by ~30% in response to alkalinity enhancement. The central gyre incubations demonstrated a shift toward smaller particle size classes, suggesting that OAE may impact community composition and/or aggregation/disaggregation processes. In terms of chemical effects, we identify equilibration of seawater pCO2, inorganic CaCO3 precipitation, and immediate effects during mixing of alkaline solutions with seawater, as important considerations for developing experimental OAE methodologies, and for practical OAE deployment. These initial results underscore the importance of performing more studies of OAE in diverse marine environments, and the need to investigate the coupling between OAE, inorganic processes, and microbial community composition.
    Description: AS was supported through WHOI internal and Assistant Scientist Startup funding. LM and SR were supported by the University of Portsmouth Ph.D. scheme and the UK NERC National Capability programme CLASS (Climate Linked Atlantic Sector Science) ECR Fellowship. BC, AF, EM, and PB were supported by the UK NERC National Capability programme CLASS, grant number NE/R015953/1.
    Keywords: Climate—change ; Ocean alkalinity enhancement ; Biogeochemistry ; North Atlantic ; Carbon flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...