ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (117)
  • Navier-Stokes equations  (80)
  • finite element method  (38)
  • Wiley-Blackwell  (117)
  • American Ceramics Society
  • American Physical Society
  • Nature Publishing Group (NPG)
  • Springer Science + Business Media
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (117)
Collection
  • Articles  (117)
Publisher
  • Wiley-Blackwell  (117)
  • American Ceramics Society
  • American Physical Society
  • Nature Publishing Group (NPG)
  • Springer Science + Business Media
  • +
Years
Topic
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Mechanics of Cohesive-frictional Materials 1 (1996), S. 95-114 
    ISSN: 1082-5010
    Keywords: multiphase material ; strain localisation ; averaging theories ; pore pressure ; cavitation ; finite element method ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: It is recalled that negative water pressures are of importance in localisation phenomena of fully saturated, undrained samples of dilatant geomaterials. A model to simulate cavitation phenomena connected with such pore water tractions is developed and implemented in a simplified form in a dynamics code for partially saturated porous media. A case of localisation is studied from the onset of the instability up to the full developed shear band. The weak mesh dependence of the maximum effective plastic strain, due to the employed physical model, is also shown.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Mechanics of Cohesive-frictional Materials 3 (1998), S. 229-256 
    ISSN: 1082-5010
    Keywords: finite element method ; viscous constitutive equations ; time-discrete scheme ; stability ; superstability ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The general framework of the paper deals with the finite element modelling of mechanical problems involving viscous materials such as bitumen or bituminous concrete. Its aim is to present a second-order-accurate discrete scheme which remains unconditionally superstable when used for the time discretization of the linear and non-linear viscoelastic constitutive equations considered. After stating the space- and time-continuous mechanical problem we focus on the time discretization of these equations, considering three different schemes. For both of them sufficiently small values of the time step are required in order to ensure the superstability, whereas the third remains unconditionally superstable. Eventually, some numerical results are presented. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 5 (1985), S. 281-292 
    ISSN: 0271-2091
    Keywords: Finite Elements ; Steady Flow ; Navier-Stokes equations ; Multiplier Methods ; Pseudo-Time-Iteration Method ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In this paper a fully explicit finite element method (FEFEM) is presented for solving steady incompressible viscous flow problems. This full explicitness is achieved by combining the multiplier (or augmented Lagrangian) method with a pseudo-time-iteration method. FEFEM needs no global matrix at all and is of great advantage to large-scale problems because they can be solved within the limit of core memory.The optimum choice of a time increment and a penalty parameter is discussed and the driven cavity flow at a Reynolds number of 1000 is computed with a refined mesh (60 × 60 elements).
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 9 (1989), S. 99-112 
    ISSN: 0271-2091
    Keywords: Mixed and penalty FEM ; Navier-Stokes equations ; Round-off and ill conditioning ; Pressure discretization ; Coupled flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: It is generally accepted that mixed and penalty finite element methods can routinely solve the incompressible Navier-Stokes equations. This paper shows by means of simple examples that problems can arise even for the simpler Stokes equations. The causes of the problem fall in either of two categories: round-off and ill conditioning, or a poor choice of pressure discretization. Nonsensical solutions can be obtained. Computation of the discrete divergence of the flow field is a simple and powerful tool to diagnose such conditions. In the first part of the paper several simple techniques for minimizing the effect of round-off are reviewed. In the second part it is shown that, for coupled flow problems, care must be exercised in the choice of the pressure approximation. A unified treatment of various observations by different workers is presented. This should prove useful for general users of the finite element method.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 9 (1989), S. 427-452 
    ISSN: 0271-2091
    Keywords: Navier-Stokes equations ; Spectral method ; Chebyshev polynomials ; Convection ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A Chebyshev collocation method for solving the unsteady two-dimensional Navier-Stokes equations in vorticity-streamfunction variables is presented and discussed. The discretization in time is obtained through a class of semi-implicit finite difference schemes. Thus at each time cycle the problem reduces to a Stokes-type problem which is solved by means of the influence matrix technique leading to the solution of Helmholtz-type equations with Dirichlet boundary conditions. Theoretical results on the stability of the method are given. Then a matrix diagonalization procedure for solving the algebraic system resulting from the Chebyshev collocation approximation of the Helmholtz equation is developed and its accuracy is tested. Numerical results are given for the Stokes and the Navier-Stokes equations. Finally the method is applied to a double-diffusive convection problem concerning the stability of a fluid stratified by salinity and heated from below.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 9 (1989), S. 891-920 
    ISSN: 0271-2091
    Keywords: Transient flows ; Oscillating aerofoil ; Dynamic stall ; Navier-Stokes equations ; Finite differences ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Unsteady viscous flow around a large-amplitude and high-frequency oscillating aerofoil is examined in this paper by numerical simulation and experimental visualization. The numerical method is based on the combination of a fourth-order Hermitian finite difference scheme for the stream function equation and a classical second-order scheme to solve the vorticity transport equation. Experiments are carried out by a traditional visualization method using solid tracers suspended in water. The comparison between numerical and experimental results is found to be satisfactory. Time evolutions of the flow structure are presented for Reynolds numbers of 3 × 103 and 104. The influence of the amplitude and frequency of the oscillating motion on the dynamic stall is analysed.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 10 (1990), S. 481-517 
    ISSN: 0271-2091
    Keywords: Spectral methods ; Chebyshev polynomials ; Navier-Stokes equations ; Time-dependent convection ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Pseudospectral methods are used for the computation of the time-dependent convective flows which arise in shallow cavities filled with low-Prandtí-number liquids when submitted to a horizontal temperature gradient. In similar situations several former numerical results have been shown to disagree about the determination of the threshold of oscillations and about the subsequent supercritical regimes. Two different tau-Chebyshev methods based on the vorticity-streamfunction formulation and using multistep time schemes are considered. Their results are discussed to assess the validity of the solutions. The physical problems concern rectangular cavities which involve either a rigid or a stress-free top wall and either conducting or insulating horizontal walls. Aside from the prediction of the onset of oscillations, which is discussed in the various situations with respect to the results of linear and non-linear analyses and to other computational results, the present study exhibits some bifurcation sequences and a hysteresis cycle at moderate Grashof numbers which are associated to the occurrence of multiple solutions.
    Additional Material: 24 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 15 (1992), S. 791-798 
    ISSN: 0271-2091
    Keywords: Generalized differential quadrature ; Incompressible flows ; Navier-Stokes equations ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A global method of generalized differential quadrature is applied to solve the two-dimensional incompressible Navier-Stokes equations in the vorticity-stream-function formulation. Numerical results for the flow past a circular cylinder were obtained using just a few grid points. A good agreement is found with the experimental data.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 1163-1178 
    ISSN: 0271-2091
    Keywords: electrolyte flow ; finite element method ; non-linear ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Electrical double-layer effects are unimportant in flows through porous media except when the Debye length k-1 is comparable in magnitude with the pore radius a. Under these conditions the equations governing the flow of electrolyte are those of Stokes, Nernst-Planck and Poisson. These equations are non-linear and require numerical solution. The finite element method provides a useful basis for solution and various algorithms are investigated. The numerical stability and errors of each scheme are analysed together with the development of an appropriate finite element mesh. The electro-osmotic flow of a typical electrolyte (barium chloride) through a uniformly charged cylindrical membrane pore is investigated and the ion fluxes are post-computed from the numerical solutions. The ion flux is shown to be strongly dependent on both zeta potential and pore radius, ka, indicating the effects of overlapping electrical double layers.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 603-620 
    ISSN: 0271-2091
    Keywords: free surface ; free convection ; time-dependent flow ; metal flow ; finite element method ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The finite element method is employed to investigate time-dependent liquid metal flows with free convection, free surfaces and Marangoni effects. The liquid circulates in a two-dimensional shallow trough with differentially heated vertical walls. The spatial formulation incorporates mixed Lagrangian approximations to the velocity, pressure, temperature and free surface position. The time integration is performed with the backward Euler and trapezoid rule methods with step size control. The Galerkin method is used to reduce the problem to a set of non-linear equations which are solved with the Newton-Raphson method. Calculations are performed for conditions relevant to the electron beam vaporization of refractory metals. The Prandtl number is 0·015 and Grashof number are in the transition range between laminar and turbulent flow. The results reveal the effects of flow intensity, surface tension gradients, mesh refinement and time integration strategy.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...