ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (42)
  • hydroxyapatite  (42)
  • Wiley-Blackwell  (42)
  • American Association for the Advancement of Science
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • Springer Nature
  • Springer Science + Business Media
  • Technology  (42)
Collection
  • Articles  (42)
Publisher
  • Wiley-Blackwell  (42)
  • American Association for the Advancement of Science
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • Springer Nature
  • +
Years
Topic
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 36 (1997), S. 306-314 
    ISSN: 0021-9304
    Keywords: magnesium ; hydroxyapatite ; calcium phosphate cement ; inhibition ; amorphous calcium phosphate ; nucleation and growth ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Calcium-deficient hydroxyapatite (HA) with a Ca/P molar ratio of 1.50 was synthesized in various concentrations (0.01-75 mM) of MgCl2 at 37.4°C by reaction between particulate CaHPO4 · 2H2O and Ca4(PO4)2O. The effects of magnesium on the kinetics of HA formation were determined using isothermal calorimetry. All reactions completely consumed the precursor phases as indicated by X-ray diffraction analysis and a constant enthalpy of reaction (240 kJ/mol). Magnesium concentrations below 1 mM had no effect on the kinetics of HA formation. Magnesium concentrations between 1 and 2.5 mM affected the reaction path but did not affect the time required for complete reaction. Higher concentrations extended the times of complete reaction due to magnesium adsorption on the precursor phase(s) and HA nuclei, and stabilization of a noncrystalline calcium phosphate (NCP). HA formation in the presence of magnesium resulted in separation of the following two events: initial formation of HA nuclei and NCP, and consumption of CaHPO4 · 2H2O. This was indicated by the appearance of an additional calorimetric peak. Variations in calcium, magnesium, and phosphate concentrations and pH with time were determined. Increasing the magnesium concentration resulted in elevated calcium concentrations. After an initial decrease in magnesium owing to its adsorption onto HA nuclei and precursor(s), a period of slow reaction at constant magnesium concentration was observed. Both the magnesium concentration in solution and the proportions of precursors present decreased prior to any evidence of a crystalline product phase. This is attributed to the formation of NCP capable of incorporating magnesium. This noncrystalline phase persisted for more than 1 year for reactions in magnesium concentrations about 2.5 mM. Its conversion to HA resulted in the release of magnesium to the solution. © 1997 John Wiley & Sons, Inc. J Biomed Mater Res., 36, 306-314, 1997.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 37 (1997), S. 122-129 
    ISSN: 0021-9304
    Keywords: hydroxyapatite ; bone marrow ; osteogenesis ; immunohistochemistry ; in situ hybridization ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: To analyze the bone-bonding property of hydroxyapatite ceramics (HA), composites of rat marrow cells and porous HA were implanted subcutaneously and harvested at 3 to 4 weeks postimplantation. De novo bone formation was observed primarily on the HA surface without fibrous tissue interposition. The HA/tissue interface was analyzed by the observations of thin undecalcified histological sections and fractured surfaces of the implants. The observations were done with a light microscope and a scanning electron microscope (SEM) connected to an energy dispersive spectrometer. The interfacial analyses showed the appearance of osteoblastic cells on the HA surface and that the cells had initiated partially mineralized bone (osteoid) formation directly onto the surface. The osteoid matured into fully mineralized bone, resulting in firm bone bonding to the HA surface. Characterization of osteoblastic cells on the surface was done by determining levels of protein and gene expression of bone Gla protein (BGP, a.k.a. Osteocalcin), i.e., immunohistochemistry and in situ hybridization, respectively. The existence of BGP and mRNA in the cytoplasmic area of the cells confirmed that active osteoblast apposition fabricated primary bone on the HA surface. All of these results indicate the importance of the HA surface in supporting osteoblastic differentiation of marrow stromal stem cells, which leads to firm bone bonding. © 1997 John Wiley & Sons, Inc. J Biomed Mater Res, 37, 122-129, 1997.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 39 (1998), S. 536-538 
    ISSN: 0021-9304
    Keywords: hydroxyapatite ; drug delivery system ; anticancer agent ; methotrexate ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: An experimental study was conducted on a drug delivery system (DDS), using porous apatite ceramics (PAC): hydroxyapatite block (HAb) [Ca10(PO4)6(OH)2] having a porosity of 35-48% and pore size range of 50-300 μm, and β-tricalcium phosphate block (TCP) [Ca3(PO4)2] having a porosity of 75-80% and pore size range of 100-400 μm, for sustained release of a chemotherapeutic agent. Methotrexate (MTX) was loaded in the pores of PAC blocks by centrifuging the blocks in MTX solution. Impregnation of MTX in PAC blocks (1 cm3) was confirmed by a magnetic resonance imaging (MRI) study using Gadolinium-DTPA enhancement. The MRI showed high signal intensity in the PAC, which was confirmed by dye loading into the pores. To estimate the MTX-releasing capability of the PAC, the blocks were stored in 3 mL of phosphate-buffered saline (PBS) at 37°C and the PBS was replaced every 48 h. The amount of MTX released was assayed by high-performance liquid chromatography. This study showed that MTX-impregnated PAC (0.63-2.25 mg/block) released the drug in a steady manner and maintained its concentration (0.1-1.0 μg/mL) up to 12 days. This concentration is high enough to be effective against tumor cells. Chemotherapeutic agent-impregnated PAC, prepared by simple centrifugation, could be a valuable form of local chemotherapy when used as a strut graft to repair bone defects. This new DDS material could also be used as an adjuvant to extended curettage and provide a means to reduce the recurrence of tumors without risk of systemic toxicity. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 39, 536-538, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 38 (1997), S. 11-16 
    ISSN: 0021-9304
    Keywords: adhesive bone cement ; 4-META ; hydroxyapatite ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Bone response to hydroxyapatite (HA) fillers in the cured 4-methacryloyloxyethyl trimellitate anhydride (4-META)/methyl methacrylate (MMA)-tri-n-butyl borane (TBB) adhesive bone cement was examined mechanically and histologically. A two-component system, consisting of powder and liquid, was formulated. The liquid portion was 5% 4-META dissolved in MMA and TBB; the powder was composed of 50 wt% poly(MMA) (PMMA) and 50 wt% dense HA fillers. The results indicated that the tensile strength decreased with the increase of HA filler size. The bone-bonding behavior of the improved cement was examined by optical microscopy and scanning electron microscopy. Seventy-two implants in six dogs for up to 24 weeks showed 4-META cement filled with HA was stable in the cement-bone interface. Histologic examinations showed that the exposed HA particles at the surface of the cured cement were generally associated with intimate attachment to bone without fibrous tissue, as well as interdigitation of cement to bone. The results suggest the importance of HA fillers in inducing bone apposition that improves cement binding to bone for long-term stability, thereby complementing rapid initial bone fixation of the cement. © 1997 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 38: 11-16, 1997
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 39 (1998), S. 524-530 
    ISSN: 0021-9304
    Keywords: magnetron sputtering ; calcium phosphates ; hydroxyapatite ; carbonate apatite ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Radiofrequency magnetron sputter deposition was used to deposit Ca-P sputter coatings on titanium discs, and these coatings were implanted subcutaneously into the backs of rabbits. Half of the as-sputtered coatings were subjected to additional heat treatment for 2 h at 500°C. X-ray diffraction (XRD) demonstrated that annealing at 500°C changed the amorphous sputtered coating into an amorphous-crystalline apatite structure. Scanning electron microscopic (SEM) examination of the sputtered coatings showed excellent coverage of the substrate surface. Annealing of the 4-μm-thick coatings resulted in the appearence of small cracks. SEM demonstrated that until 4 weeks of implantation, all heat-treated coatings were present and all amorphous coatings were completely or mostly dissolved. Fourier transform infrared spectroscopy showed the formation of carbonate apatite (CO3-AP) on these specimens. Furthermore, XRD analysis showed that these CO3-AP precipitated coatings disappeared after 8 weeks of implantation. On the other hand, SEM inspection of these specimens revealed that the 4-μm heat-treated coating was still partially maintained and that small Ca-P crystals were present on the titanium substrate. On the basis of these results, we conclude that apparently 0.1 μm heat-treated Ca-P sputter coating is of sufficient thicknesses to stimulate carbonate apatite deposition under in vivo conditions. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 39, 524-530, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 42 (1998), S. 387-395 
    ISSN: 0021-9304
    Keywords: hydroxyapatite ; hydrothermal-electrochemical ; deposition ; titanium ; coating ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Hydroxyapatite crystals were formed on a titanium electrode using the hydrothermal-electrochemical method in an autoclave with two electrodes. The electrolyte dissolving NaCl, K2HPO4, CaCl2 · 2H2O, trishydroxyaminomethane, and hydrochloric acid was maintained at 80°-200°C. After loading of a constant current at 12.5 mA/cm2 for 1 h, the deposited amounts were measured through the weight gain of the electrode. The deposits were characterized by X-ray diffractometry, Fourier transform infrared spectroscopy, field emission-type scanning electron microscopy, field emission-type transmission electron microscopy, and energy dispersive X-ray spectroscopy. The deposited amount increased with electrolyte temperatures up to 150°C and slightly decreased above that temperature. The deposits were identified as hydroxyapatite crystal rods grown along the c axis and perpendicular to the substrate. The crystallinity of the deposited hydroxyapatite increased continuously with the electrolyte temperature and closed to stoichiometric hydroxyapatite. At 150°-160°C, the hydroxyapatite rod grew very homogeneously perpendicular to the substrate, and the edge of the needle had a flat hexagonal plane. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 42, 387-395, 1998.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 43 (1998), S. 46-53 
    ISSN: 0021-9304
    Keywords: hydroxyapatite ; electrophoretic coating ; composite ; alumina ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: By means of an electrophoretic deposition technique followed by sintering, alumina and zirconia ceramics were coated with apatitic composites composed of porous surface and intermediate layers of hydroxyapatite and an adhesive calcium phosphate layer. The electrophoretic deposition of these layers was attained by the use of a mixed solvent of acetylacetone and alcohol as well as the mixed powders of the calcium phosphates and alumina. The adhesive layer was formed by the codeposition of calcium phosphate glass powders (Ca/P = ½) with hydroxyapatite, while the open porosity of the surface layer was increased with the addition of alumina to the hydroxyapatite layers. The resultant phases of sintered composite layers were tricalcium phosphate and alumina with a small amount of hydroxyapatite. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 43: 46-53, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 43 (1998), S. 77-81 
    ISSN: 0021-9304
    Keywords: hydroxyapatite ; porous ceramics ; coating ; interfacial bond ; strength ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: A thin film of hydroxyapatite (HA) was successfully coated onto a highly porous substrate of alumina by using a novel solution technique. The coated HA bonded strongly to the substrate through a glass sintering aid with an intermediate thermal expansion coefficient. The coating was also found to be microstructurally and chemically uniform on the surfaces of the interconnected pores in the matrix of the substrate. Mechanical property testing results showed that the strength of the HA-coated composite was significantly improved, indicating a high potential for structural bone substitutes in hard tissue prosthetics. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 43: 77-81, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0021-9304
    Keywords: calcium phosphate(s) ; brushite ; hydroxyapatite ; calcite ; remodeling ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Four calcium phosphate cement formulations were implanted in the rabbit distal femoral metaphysis and middiaphysis. Chemical, crystallographic, and histological analyses were made at 2, 4, and 8 weeks after implantation. When implanted into the metaphysis, part of the brushite cement was converted into carbonated apatite by 2 weeks. Some of the brushite cement was removed by mononuclear macrophages prior to its conversion into apatite. Osteoclastlike cell mediated remodeling was predominant at 8 weeks after brushite had converted to apatite. The same histological results were seen for brushite plus calcite aggregate cement, except with calcite aggregates still present at 8 weeks. However, when implanted in the diaphysis, brushite and brushite plus calcite aggregate did not convert to another calcium phosphate phase by 4 weeks. Carbonated apatite cement implanted in the metaphysis did not transform to another calcium phosphate phase. There was no evidence of adverse foreign body reaction. Osteoclastlike cell mediated remodeling was predominant at 8 weeks. The apatite plus calcite aggregate cement implanted in the metaphysis that was not remodeled remained as poorly crystalline apatite. Calcite aggregates were still present at 8 weeks. There was no evidence of foreign body reaction. Osteoclastlike cell remodeling was predominant at 8 weeks. Response to brushite cements prior to conversion to apatite was macrophage dominated, and response to apatite cements was osteoclast dominated. Mineralogy, chemical composition, and osseous implantation site of these calcium phosphates significantly affected their in vivo host response. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 43: 451-461, 1998
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 36 (1997), S. 265-273 
    ISSN: 0021-9304
    Keywords: bone ; titanium ; hydroxyapatite ; polyactive ; gap ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: In order to study bone growth conducting capacities of new biomaterials under standardized conditions, a goat model was developed based on a canine model by Soballe. Titanium alloy implants with and without a hydroxyapatite coating were used as positive and negative controls, and these were implanted with a circumferential gap of one millimeter in the spongious bone of the knee condyles of two groups of four goats. These goats were sacrificed at 6 and 25 weeks. A second experiment was done on two groups of four goats with the same type of titanium alloy and hydroxyapatite-coated implants as controls and with Polyactive® 55-45 coated titanium alloy implants for testing. These goats were sacrificed at 9 and 25 weeks, respectively. Qualitative and quantitative differences in gap healing were evaluated through light microscopy, and initiation and direction of bone apposition were determined with fluorescence microscopy. Apposition of bone was seen directly on all hydroxyapatite surfaces and on some of the noncoated titanium alloy surfaces. The difference between the percentage of bone growth on the titanium alloy implants and the hydroxyapatite-coated implants appeared to be divergent in time: the bone growth on the noncoated implants declined after 9 weeks in contrast to the steady increase of bone growth on the hydroxyapatite-coated implants towards the 25 week follow-up time (p = 0.02). No significant difference was found between the first and the second experiment: apposition of bone on the implants differed only 6.6% on a scale of 0% to 100%. Only scarce bone growth was seen on the polyactive-coated implants in this model. The newly tested Polyactive® 55-45 coating apparently needs initial bone contact for bone-bonding and therefore showed hardly any direct bone formation on its surface. The clear differences in the reaction of bone to the coated and noncoated implants in this goat study and the reproducibility of these reactions of bone to the different controls indicate the sensitivity of the currently used animal model and its suitability for use as a bioactivity assay. © 1997 John Wiley & Sons, Inc. J Biomed Mater Res, 36, 265-273, 1997.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...