ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology  (3)
  • 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
  • American Association for the Advancement of Science  (2)
  • ELSEVIER  (2)
  • American Institute of Physics (AIP)
  • MDPI Publishing
Collection
  • Articles  (4)
Years
  • 1
    Publication Date: 2017-04-04
    Description: We present a high resolution DTM of the Palinuro Seamount (PS, Tyrrhenian Sea, Italy) resulting from the processing of multibeam swath bathymetry records acquired during the second leg of the “Aeolian 2007” cruise. PS consists of several superimposed volcanoes aligned along a N100°E strike and measures 55×25 km. The western and the central sectors result from the coalescence of collapse structures (calderas) with younger volcanic cones. The eastern sector reveals a more complex and articulated structure. In the central sector, a volcanic crater with a well-preserved rim not obliterated by erosional events suggests a volcanological rejuvenation of this sector. The presence of flat surfaces on the top of the seamount may be due to the formation of marine terraces during the last sea-level lowering. Lateral collapses on the northern and southern flanks of the seamount are probably related to slope instability, as suggested by the presence of steep slopes (25–40°). The main fault affecting PS strikes N65°E and shows a right lateral component of movement. E–W and N10°E striking faults are also present. Assuming that theN100°E deep-seated fault,which is responsible for theemplacement of PS,movedwith sinistral slips, we interpret the N65°E and the N10°E faults as right-lateral (second order) shear and left-lateral (third order) shear, respectively. Due to the particular location of the Palinuro Seamount, the data presented here allow us to better understand the volcanism and the geodynamic processes of the Tyrrhenian Sea.
    Description: Published
    Description: 129–140
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Multibeam bathymetry ; Marine volcanoes ; Tyrrhenian Sea ; Seamount ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-21
    Description: BREVIA
    Description: We report on the discovery in southern Egypt of an impact crater 45 m in diameter with a pristine rayed structure. Such pristine structures have been previously observed only on atmosphereless rocky or icy planetary bodies in the Solar System. This feature and the association with an iron meteorite impactor and shock metamorphism provides a unique picture of small-scale hypervelocity impacts on the Earth's crust. Contrary to current geophysical models, ground data indicate that iron meteorites with masses of the order of tens of tons can penetrate the atmosphere without significant fragmentation.
    Description: Published
    Description: 804
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: open
    Keywords: Impact crater ; Egypt ; geophysical exploration ; ataxite ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We present a high resolution DTM of the Palinuro Seamount (PS, Tyrrhenian Sea, Italy) resulting from the processing of multibeam swath bathymetry records acquired during the second leg of the “Aeolian 2007” cruise. PS consists of several superimposed volcanoes aligned along a N100°E strike and measures 55×25 km. The western and the central sectors result from the coalescence of collapse structures (calderas) with younger volcanic cones. The eastern sector reveals a more complex and articulated structure. In the central sector, a volcanic crater with a well-preserved rim not obliterated by erosional events suggests a volcanological rejuvenation of this sector. The presence of flat surfaces on the top of the seamount may be due to the formation of marine terraces during the last sea-level lowering. Lateral collapses on the northern and southern flanks of the seamount are probably related to slope instability, as suggested by the presence of steep slopes (25–40°). The main fault affecting PS strikes N65°E and shows a right lateral component of movement. E–W and N10°E striking faults are also present. Assuming that theN100°E deep-seated fault,which is responsible for theemplacement of PS,movedwith sinistral slips, we interpret the N65°E and the N10°E faults as right-lateral (second order) shear and left-lateral (third order) shear, respectively. Due to the particular location of the Palinuro Seamount, the data presented here allow us to better understand the volcanism and the geodynamic processes of the Tyrrhenian Sea.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: Multibeam bathymetry ; Marine volcanoes ; Tyrrhenian Sea ; Seamount ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    Publication Date: 2017-04-04
    Description: Episodes of nonvolcanic tremor and accompanying slow slip recently have been observed in the subduction zones of Japan and Cascadia. In Cascadia, such episodes typically last a few weeks, and differ from “normal” earthquakes in their source location and momentduration scaling. The three most recent episodes in the Puget Sound/Southern Vancouver Island portion of the Cascadia subduction zone have been exceptionally well recorded. In each episode, we see clear pulsing of tremor activity with periods of 12.4 and 24-25 hours, the same as the principal lunar and lunisolar tides. This indicates that the small stresses associated with the solid-earth and ocean tides influence the genesis of tremor much more effectively than they do “normal” earthquakes. Because the lithostatic stresses are 105 times larger than those associated with the tides, we argue that tremor occurs on very weak faults.
    Description: Published
    Description: 186 -189
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Nonvolcanic ; tremor ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...