ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Acoustics
  • American Geophysical Union  (1)
  • Public Library of Science  (1)
  • American Association for the Advancement of Science
Collection
  • Articles  (2)
Years
  • 1
    Publication Date: 2017-04-04
    Description: In recent years, an increasing number of surveys have definitively confirmed the seasonal presence of fin whales (Balaenoptera physalus) in highly productive regions of the Mediterranean Sea. Despite this, very little is yet known about the routes that the species seasonally follows within the Mediterranean basin and, particularly, in the Ionian area. The present study assesses for the first time fin whale acoustic presence offshore Eastern Sicily (Ionian Sea), throughout the processing of about 10 months of continuous acoustic monitoring. The recording of fin whale vocalizations was made possible by the cabled deep-sea multidisciplinary observatory, “NEMO-SN1”, deployed 25 km off the Catania harbor at a depth of about 2,100 meters. NEMO-SN1 is an operational node of the European Multidisciplinary Seafloor and water-column Observatory (EMSO) Research Infrastructure. The observatory was equipped with a low-frequency hydrophone (bandwidth: 0.05 Hz–1 kHz, sampling rate: 2 kHz) which continuously acquired data from July 2012 to May 2013. About 7,200 hours of acoustic data were analyzed by means of spectrogram display. Calls with the typical structure and patterns associated to the Mediterranean fin whale population were identified and monitored in the area for the first time. Furthermore, a background noise analysis within the fin whale communication frequency band (17.9–22.5 Hz) was conducted to investigate possible detection-masking effects. The study confirms the hypothesis that fin whales are present in the Ionian Sea throughout all seasons, with peaks in call detection rate during spring and summer months. The analysis also demonstrates that calls were more frequently detected in low background noise conditions. Further analysis will be performed to understand whether observed levels of noise limit the acoustic detection of the fin whales vocalizations, or whether the animals vocalize less in the presence of high background noise.
    Description: Published
    Description: e0141838
    Description: 3A. Ambiente Marino
    Description: JCR Journal
    Description: open
    Keywords: Whales ; Bioacoustics ; Background noise (acoustics) ; Acoustic signals ; Sperm whales ; Vocalization ; Acoustics ; Data acquisition ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-20
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Loranger, S., & Weber, T. C. . Shipboard acoustic observations of flow rate from a seafloor-sourced oil spill. Journal of Geophysical Research: Oceans, 125(10), (2020): e2020JC016274, https://doi.org/10.1029/2020JC016274.
    Description: In 2004 a debris flow generated by Hurricane Ivan toppled an oil production platform in Mississippi Canyon lease block 20 (MC20). Between 2004 and the installation of a containment system in 2019 MC20 became an in situ laboratory for a wide range of hydrocarbon in the sea‐related research, including different methods of assessing the volumetric flow rate of hydrocarbons spanning different temporal scales. In 2017 a shipboard acoustic Doppler current profiler (ADCP) and high‐frequency (90 to 154 kHz) broadband echosounder were deployed to assess the flow rate of liquid and gas phase hydrocarbons. Measurements of horizontal currents were combined with acoustic mapping to determine the rise velocity of the seep as it moved downstream. Models of the rise velocity for fluid particles were used to predict the size of oil droplets and gas bubbles in the seep. The amplitude and shape of the broadband acoustic backscatter were then used to differentiate between, and determine the flow rate of, hydrocarbons. Oil flow rate in the seep was estimated to be 56 to 86 barrels/day (mean urn:x-wiley:jgrc:media:jgrc24228:jgrc24228-math-0001 barrels/day) while the flow rate of gaseous hydrocarbons was estimated to be 98 to 359 m3/day (mean urn:x-wiley:jgrc:media:jgrc24228:jgrc24228-math-0002 m3/day).
    Description: The work was supported by the National Oceanic and Atmospheric Administration (Grant NA15NOS4000200).
    Keywords: Oil spill ; Acoustics ; Flow rate ; MC20
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...