ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases  (3)
  • Carbon sequestration
  • American Association for the Advancement of Science  (2)
  • Springer Science+Business Media B.V.  (2)
  • American Chemical Society (ACS)
  • American Institute of Physics (AIP)
Collection
  • Articles  (4)
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    Publication Date: 2017-04-04
    Description: BREVIA
    Description: Current emission inventories require an additional "unknown" source to balance the global atmospheric budgets of ethane (C2H6). Here, we provide evidence that a substantial part of the missing source can be attributed to natural gas seepage from petroliferous, geothermal, and volcanic areas. Such geologic sources also inject propane (C3H8) into the atmosphere. The analysis of a large data set of methane (CH4), ethane, and propane concentrations in surface gas emissions of 238 sites from different geographic and geologic areas, coupled with published estimates of geomethane emissions, suggests that Earth's degassing accounts for at least 17% and 10% of total ethane and propane emissions, respectively.
    Description: Published
    Description: 478
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Ethane ; Propane ; Geologic emissions ; Seepage ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-24
    Description: Recent studies have highlighted the need to consider geological carbon sources when estimating the net ecosystem carbon balance (NECB) of terrestrial ecosystems located in areas potentially affected by geofluid circulation. We propose a new methodology using physical parameters of the atmospheric boundary layer to quantify the CO2 coming from deep ground origin in a steppe ecosystem located in the SE of Spain. Then, we compared published NECB estimates at the site with seasonal patterns of soil CO2 efflux and biological activity measured by satellite images over a 2-year period (2007/2008). The alpha grass ecosystem was a net carbon source (93.8 and 145.1 g C m-2 year-1, in 2007 and 2008, respectively), particularly as a result of large amounts of carbon released over the dry period that were not related to biological activity. While the highest ecosystem CO2 emission rates were measured over the dry period (reaching up to 15 lmol m-2 s-1), soil CO2 efflux rates (ca. 0.5 lmol m-2 s-1) and plant productivity were minimal during this period. After using a linear relationship between NECB and wind speed for different stability conditions and wind sectors, we estimated the geological flux FGEO (217.9 and 244.0 g C m-2 in 2007 and 2008, respectively) and subtracted it from the NECB to obtain the biological flux FBIO (-124.0 and -98.9 g C m-2 in 2007 and 2008, respectively). We then partitioned FBIO into gross primary productivity and ecosystem respiration and proved that, after removing FGEO, ecosystem respiration and soil CO2 efflux followed similar seasonal patterns. The annual contribution of the geological component to NECB was 49.6 and 46.7 % for the year 2007 and 2008, respectively. Therefore, it is clear that geological carbon sources should be quantified in those ecosystems located in areas with potential natural emission of geological gases to the surface.
    Description: Published
    Description: 83-101
    Description: 7A. Geofisica di esplorazione
    Description: JCR Journal
    Description: restricted
    Keywords: carbon emission, soil, dry land ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-04
    Description: Citation only. Published in Science 316: 567-570, doi: 10.1126/science.1137959
    Description: Funding was obtained primarily through the NSF, Ocean Sciences Programs in Chemical and Biological Oceanography, with additional support from the U.S. Department of Energy, Office of Science, Biological and Environmental Research Program, and other national programs, including the Australian Cooperative Research Centre program and Australian Antarctic Division.
    Keywords: Carbon flux ; Carbon sequestration ; Biological pump
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-09
    Description: CO2 sequestration in geological formations requires specific conditions to safely store this greenhouse gas underground. Different geological reservoirs can be used for this purpose, although saline aquifers are one of the most promising targets due to both their worldwide availability and storing capacity. Nevertheless, geochemical processes and fluid flow properties are to be assessed pre-, during, and post-injection of CO2. Theoretical calculations carried out by numerical geochemical modeling play an important role to understand the fate of CO2 and to investigate short-to-long-term consequences of CO2 storage into deep saline reservoirs. In this paper, the injection of CO2 in a deep structure located offshore in the Tyrrhenian Sea (central Italy) was simulated. The results of a methodological approach for evaluating the impact that CO2 has in a saline aquifer hosted in Mesozoic limestone formations were discussed. Seismic reflection data were used to develop a reliable 3D geological model, while 3D simulations of reactive transport were performed via the TOUGHREACT code. The simulation model covered an area of 〉100 km2 and a vertical cross-section of 〉3 km, including the trapping structure. Two simulations, at different scales, were carried out to depict the local complex geological system and to assess: (i) the geochemical evolution at the reservoir–caprock interface over a short time interval, (ii) the permeability variations close to the CO2 plume front, and (iii) the CO2 path from the injection well throughout the geological structure. One of the most important results achieved in this study was the formation of a geochemical barrier as CO2-rich acidic waters flowed into the limestone reservoir.
    Description: Published
    Description: 107-143
    Description: 5A. Energia e georisorse
    Description: JCR Journal
    Description: restricted
    Keywords: CO2 geological storage ; Reactive transport modeling ; Deep saline aquifers ; Geochemical barriers ; Permeability feedback ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...