ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases  (3)
  • European Geophysical Union  (2)
  • American Association for the Advancement of Science  (1)
  • American Chemical Society
  • American Institute of Physics
Collection
Keywords
Years
  • 1
    Publication Date: 2021-06-14
    Description: Methane is a major contributor to the greenhouse effect, its atmospheric concentration being more than doubled since the XIX century. Every year 22 Tg of methane are released to the atmosphere from several natural and anthropogenic sources. Natural sources include geothermal/volcanic areas but the estimation of the total methane emission from these areas is currently not well defined since the balance between emission through degassing and microbial oxidation within the soils is not well known. Microbial oxidation in soils contributes globally for about 3-9% to the removal of methane from the atmosphere and recent studies evidenced methanotrophic activity also in soils of volcanic/geothermal areas despite their harsh environmental conditions (high temperatures, low pH and high concentrations of H2S and NH3). Methanotrophs are a diverse group of bacteria that are able to metabolize methane as their only source of carbon and energy and are found within the Alpha and Gamma classes of Proteobacteria and within the phylum Verrucomicrobia. Our purpose was to study the interaction between methanotrophic communities and the methane emitted from the geothermally most active site of Pantelleria island (Italy), Favara Grande, whose total methane emission has been previously estimated in about 2.5 t/a. Laboratory incubation experiments with soil samples from Favara Grande showed methane consumption values of up to 9500 ng g-1 dry soil per hour while soils collected outside the geothermal area consume less than 6 ng g-1 h-1. The maximum consumption was measured in the shallowest part of the soil profile (1-3 cm) and high values (〉100 ng g-1 h-1) were maintained up to a depht of 15 cm. Furthermore, the highest consumption was measured at 37 C, and a still recognizable consumption (〉20 ng g-1 h-1) at 80 C, with positive correlation with the methane concentration in the incubation atmosphere. These results can be considered a clear evidence of the presence of methanotrophs that were investigated by culturing and culture-independent techniques. The diversity of proteobacterial methanotrophs was investigated by creating a clone library of the amplified methane mono-oxygenase encoding gene, pmoA. Clone sequencing indicates the presence of Gammaproteobacteria in the soils of Favara Grande. Enrichment cultures, on a mineral medium in a CH4-enriched atmosphere, led to the isolation of different strains that were identified as Methylocistis spp., which belong to the Alphaproteobacteria. The presence of Verrucomicrobia was detected by amplification of pmoA gene using newly designed primers. Soils from Favara Grande show therefore the largest spectrum of methanotrophic microorganisms until now detected in a geothermal environment. While the presence of Verrucomicrobia in geothermal soils was predictable due to their thermophilic and acidophilic character, the presence of both Alpha and Gamma proteobacteria was unexpected. Their presence is limited to the shallowest part of the soil were temperatures are lower and is probably favored by a soil pH that is not too low (pH 5) and their contribution to biological methane oxidation at Pantelleria is significant. Understanding the ecology of methanotrophy in geothermal sites will increase our knowledge of the role of soils in methane emissions in such environments.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: soil methane fluxes ; methanotrophic activity ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    Publication Date: 2017-04-04
    Description: BREVIA
    Description: Current emission inventories require an additional "unknown" source to balance the global atmospheric budgets of ethane (C2H6). Here, we provide evidence that a substantial part of the missing source can be attributed to natural gas seepage from petroliferous, geothermal, and volcanic areas. Such geologic sources also inject propane (C3H8) into the atmosphere. The analysis of a large data set of methane (CH4), ethane, and propane concentrations in surface gas emissions of 238 sites from different geographic and geologic areas, coupled with published estimates of geomethane emissions, suggests that Earth's degassing accounts for at least 17% and 10% of total ethane and propane emissions, respectively.
    Description: Published
    Description: 478
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Ethane ; Propane ; Geologic emissions ; Seepage ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The study area is a 130 km long fast spreading graben in Central Greece. Its complex geodynamical setting includes both the presence at depth of a subduction slab responsible for the recent (Quaternary) volcanic activity in the area and the western termination of a tectonic lineament of regional importance (the North-Anatolian fault). Its high geothermal gradient is evidenced by the presence of many thermal springs with temperatures from 19 to 82 C, issuing along the normal faults bordering the graben. In the period 2004-2012 about 50 gas and water samples have been collected and their chemical and isotopic analysis revealed a wide range of compositions. Going from west to east the gas composition changes from CH4- to CO2-dominated passing through mixed N2- CH4 and N2-CO2 compositions, while at the same time the He isotopic composition goes from typical crustal values (0.05 R/Ra) up to 0.87 R/Ra (corrected for air contamination), showing in the easternmost sites a small but significant mantle input. Isotopic composition of CH4-C indicates a thermogenic origin for the CH4-rich samples and hydrothermal origin for the remaining samples. Positive 15N values indicate a contribution of crustal derived nitrogen for the N2-rich samples. The 13C values of most the CO2-enriched samples show a mixed origin (mantle and marine carbonates). Also the chemical composition of the waters shows differences along the graben and two main groups can be separated. The first, represented by dilute waters (E.C. 〈 600 S/cm), is found in the westernmost sites characterised by the presence of CH4-rich and mixed N2-CH4 gases. The remaining waters display higher salinities (E.C. from 12 to 56 mS/cm) due to the mixing with a modified marine component. Only the water composition of easternmost sites in the Giggenbach’s cation triangular graph plots in the field of the partially equilibrated waters giving estimated temperatures at depth of 150-160 C.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: hydrothermal systems ; gas chemistry ; water chemistry ; stable isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...