ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-16
    Description: Groundwater use in California's San Joaquin Valley exceeds replenishment of the aquifer, leading to substantial diminution of this resource and rapid subsidence of the valley floor. The volume of groundwater lost over the past century and a half also represents a substantial reduction in mass and a large-scale unburdening of the lithosphere, with significant but unexplored potential impacts on crustal deformation and seismicity. Here we use vertical global positioning system measurements to show that a broad zone of rock uplift of up to 1-3 mm per year surrounds the southern San Joaquin Valley. The observed uplift matches well with predicted flexure from a simple elastic model of current rates of water-storage loss, most of which is caused by groundwater depletion. The height of the adjacent central Coast Ranges and the Sierra Nevada is strongly seasonal and peaks during the dry late summer and autumn, out of phase with uplift of the valley floor during wetter months. Our results suggest that long-term and late-summer flexural uplift of the Coast Ranges reduce the effective normal stress resolved on the San Andreas Fault. This process brings the fault closer to failure, thereby providing a viable mechanism for observed seasonality in microseismicity at Parkfield and potentially affecting long-term seismicity rates for fault systems adjacent to the valley. We also infer that the observed contemporary uplift of the southern Sierra Nevada previously attributed to tectonic or mantle-derived forces is partly a consequence of human-caused groundwater depletion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amos, Colin B -- Audet, Pascal -- Hammond, William C -- Burgmann, Roland -- Johanson, Ingrid A -- Blewitt, Geoffrey -- England -- Nature. 2014 May 22;509(7501):483-6. doi: 10.1038/nature13275. Epub 2014 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Geology Department, Western Washington University, Bellingham, Washington 98225-9080, USA. ; Department of Earth Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada. ; Nevada Geodetic Laboratory, Nevada Bureau of Mines and Geology and Nevada Seismological Laboratory, University of Nevada, Reno, Nevada 89557, USA. ; 1] Berkeley Seismological Laboratory, University of California, Berkeley, California 94720-4760, USA [2] Department of Earth and Planetary Science, University of California, Berkeley, California 97720-4767, USA. ; Berkeley Seismological Laboratory, University of California, Berkeley, California 94720-4760, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24828048" target="_blank"〉PubMed〈/a〉
    Keywords: *Altitude ; California ; Earthquakes/*statistics & numerical data ; Elasticity ; Environmental Monitoring ; Geographic Information Systems ; Groundwater/*analysis ; *Models, Theoretical ; Seasons ; Water Supply/analysis/*statistics & numerical data
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-01-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jonietz, Erika -- England -- Nature. 2012 Nov 22;491(7425):S56-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23320288" target="_blank"〉PubMed〈/a〉
    Keywords: Biomechanical Phenomena ; Biophysics/methods ; Cell Communication ; *Cell Physiological Processes ; Drug Resistance, Neoplasm ; Elasticity ; Hardness ; Humans ; Medical Oncology ; *Models, Biological ; Neoplasm Invasiveness ; Neoplasm Metastasis ; Neoplasms/diagnosis/drug therapy/genetics/*pathology ; Rheology ; Tumor Microenvironment ; Viscosity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-09-08
    Description: Hydrogels are used as scaffolds for tissue engineering, vehicles for drug delivery, actuators for optics and fluidics, and model extracellular matrices for biological studies. The scope of hydrogel applications, however, is often severely limited by their mechanical behaviour. Most hydrogels do not exhibit high stretchability; for example, an alginate hydrogel ruptures when stretched to about 1.2 times its original length. Some synthetic elastic hydrogels have achieved stretches in the range 10-20, but these values are markedly reduced in samples containing notches. Most hydrogels are brittle, with fracture energies of about 10 J m(-2) (ref. 8), as compared with approximately 1,000 J m(-2) for cartilage and approximately 10,000 J m(-2) for natural rubbers. Intense efforts are devoted to synthesizing hydrogels with improved mechanical properties; certain synthetic gels have reached fracture energies of 100-1,000 J m(-2) (refs 11, 14, 17). Here we report the synthesis of hydrogels from polymers forming ionically and covalently crosslinked networks. Although such gels contain approximately 90% water, they can be stretched beyond 20 times their initial length, and have fracture energies of approximately 9,000 J m(-2). Even for samples containing notches, a stretch of 17 is demonstrated. We attribute the gels' toughness to the synergy of two mechanisms: crack bridging by the network of covalent crosslinks, and hysteresis by unzipping the network of ionic crosslinks. Furthermore, the network of covalent crosslinks preserves the memory of the initial state, so that much of the large deformation is removed on unloading. The unzipped ionic crosslinks cause internal damage, which heals by re-zipping. These gels may serve as model systems to explore mechanisms of deformation and energy dissipation, and expand the scope of hydrogel applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642868/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642868/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Jeong-Yun -- Zhao, Xuanhe -- Illeperuma, Widusha R K -- Chaudhuri, Ovijit -- Oh, Kyu Hwan -- Mooney, David J -- Vlassak, Joost J -- Suo, Zhigang -- R01 DE013033/DE/NIDCR NIH HHS/ -- R37 DE013033/DE/NIDCR NIH HHS/ -- England -- Nature. 2012 Sep 6;489(7414):133-6. doi: 10.1038/nature11409.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22955625" target="_blank"〉PubMed〈/a〉
    Keywords: Acrylic Resins/chemistry ; Alginates/chemistry ; Carbohydrate Sequence ; Elasticity ; Glucuronic Acid/chemistry ; Hexuronic Acids/chemistry ; Hydrogels/chemical synthesis/*chemistry ; Materials Testing ; Molecular Sequence Data ; Polymers/chemical synthesis/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-03
    Description: Natural materials are renowned for exquisite designs that optimize function, as illustrated by the elasticity of blood vessels, the toughness of bone and the protection offered by nacre. Particularly intriguing are spider silks, with studies having explored properties ranging from their protein sequence to the geometry of a web. This material system, highly adapted to meet a spider's many needs, has superior mechanical properties. In spite of much research into the molecular design underpinning the outstanding performance of silk fibres, and into the mechanical characteristics of web-like structures, it remains unknown how the mechanical characteristics of spider silk contribute to the integrity and performance of a spider web. Here we report web deformation experiments and simulations that identify the nonlinear response of silk threads to stress--involving softening at a yield point and substantial stiffening at large strain until failure--as being crucial to localize load-induced deformation and resulting in mechanically robust spider webs. Control simulations confirmed that a nonlinear stress response results in superior resistance to structural defects in the web compared to linear elastic or elastic-plastic (softening) material behaviour. We also show that under distributed loads, such as those exerted by wind, the stiff behaviour of silk under small deformation, before the yield point, is essential in maintaining the web's structural integrity. The superior performance of silk in webs is therefore not due merely to its exceptional ultimate strength and strain, but arises from the nonlinear response of silk threads to strain and their geometrical arrangement in a web.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cranford, Steven W -- Tarakanova, Anna -- Pugno, Nicola M -- Buehler, Markus J -- England -- Nature. 2012 Feb 1;482(7383):72-6. doi: 10.1038/nature10739.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22297972" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomechanical Phenomena ; Elasticity ; Hardness ; Models, Biological ; Silk/*chemistry ; *Spiders/physiology ; *Tensile Strength ; Wind
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-05
    Description: The developing vertebrate gut tube forms a reproducible looped pattern as it grows into the body cavity. Here we use developmental experiments to eliminate alternative models and show that gut looping morphogenesis is driven by the homogeneous and isotropic forces that arise from the relative growth between the gut tube and the anchoring dorsal mesenteric sheet, tissues that grow at different rates. A simple physical mimic, using a differentially strained composite of a pliable rubber tube and a soft latex sheet is consistent with this mechanism and produces similar patterns. We devise a mathematical theory and a computational model for the number, size and shape of intestinal loops based solely on the measurable geometry, elasticity and relative growth of the tissues. The predictions of our theory are quantitatively consistent with observations of intestinal loops at different stages of development in the chick embryo. Our model also accounts for the qualitative and quantitative variation in the distinct gut looping patterns seen in a variety of species including quail, finch and mouse, illuminating how the simple macroscopic mechanics of differential growth drives the morphology of the developing gut.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335276/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335276/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Savin, Thierry -- Kurpios, Natasza A -- Shyer, Amy E -- Florescu, Patricia -- Liang, Haiyi -- Mahadevan, L -- Tabin, Clifford J -- R01 HD047360/HD/NICHD NIH HHS/ -- R01 HD047360-07/HD/NICHD NIH HHS/ -- England -- Nature. 2011 Aug 3;476(7358):57-62. doi: 10.1038/nature10277.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21814276" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomechanical Phenomena ; Chick Embryo ; Computer Simulation ; Elasticity ; Female ; Finches/embryology ; Intestines/*anatomy & histology/*embryology ; Mesentery/anatomy & histology/embryology ; Mice ; *Models, Anatomic ; *Models, Biological ; Quail/embryology ; Rotation ; Rubber
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-04-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huck, Wilhelm T S -- England -- Nature. 2011 Apr 28;472(7344):425-6. doi: 10.1038/472425a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21525922" target="_blank"〉PubMed〈/a〉
    Keywords: Biosensing Techniques ; Drug Delivery Systems ; Elasticity ; Elastomers/chemistry ; Molecular Conformation/radiation effects ; Pliability ; Polymers/*chemistry/*radiation effects ; Tissue Engineering
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-03-18
    Description: Inelastic light scattering spectroscopy has, since its first discovery, been an indispensable tool in physical science for probing elementary excitations, such as phonons, magnons and plasmons in both bulk and nanoscale materials. In the quantum mechanical picture of inelastic light scattering, incident photons first excite a set of intermediate electronic states, which then generate crystal elementary excitations and radiate energy-shifted photons. The intermediate electronic excitations therefore have a crucial role as quantum pathways in inelastic light scattering, and this is exemplified by resonant Raman scattering and Raman interference. The ability to control these excitation pathways can open up new opportunities to probe, manipulate and utilize inelastic light scattering. Here we achieve excitation pathway control in graphene with electrostatic doping. Our study reveals quantum interference between different Raman pathways in graphene: when some of the pathways are blocked, the one-phonon Raman intensity does not diminish, as commonly expected, but increases dramatically. This discovery sheds new light on the understanding of resonance Raman scattering in graphene. In addition, we demonstrate hot-electron luminescence in graphene as the Fermi energy approaches half the laser excitation energy. This hot luminescence, which is another form of inelastic light scattering, results from excited-state relaxation channels that become available only in heavily doped graphene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Chi-Fan -- Park, Cheol-Hwan -- Boudouris, Bryan W -- Horng, Jason -- Geng, Baisong -- Girit, Caglar -- Zettl, Alex -- Crommie, Michael F -- Segalman, Rachel A -- Louie, Steven G -- Wang, Feng -- England -- Nature. 2011 Mar 31;471(7340):617-20. doi: 10.1038/nature09866. Epub 2011 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21412234" target="_blank"〉PubMed〈/a〉
    Keywords: Elasticity ; Electrons ; Graphite/*chemistry ; *Light ; Luminescence ; Photons ; *Quantum Theory ; *Scattering, Radiation ; Spectrum Analysis, Raman ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2011-02-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hersen, Pascal -- Ladoux, Benoit -- England -- Nature. 2011 Feb 17;470(7334):340-1. doi: 10.1038/470340a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21331032" target="_blank"〉PubMed〈/a〉
    Keywords: Biomechanical Phenomena ; Cell Adhesion/physiology ; Cell Movement/*physiology ; Dictyostelium/*cytology ; Elasticity ; Single-Cell Analysis/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-05-07
    Description: The passive elasticity of muscle is largely governed by the I-band part of the giant muscle protein titin, a complex molecular spring composed of a series of individually folded immunoglobulin-like domains as well as largely unstructured unique sequences. These mechanical elements have distinct mechanical properties, and when combined, they provide the desired passive elastic properties of muscle, which are a unique combination of strength, extensibility and resilience. Single-molecule atomic force microscopy (AFM) studies demonstrated that the macroscopic behaviour of titin in intact myofibrils can be reconstituted by combining the mechanical properties of these mechanical elements measured at the single-molecule level. Here we report artificial elastomeric proteins that mimic the molecular architecture of titin through the combination of well-characterized protein domains GB1 and resilin. We show that these artificial elastomeric proteins can be photochemically crosslinked and cast into solid biomaterials. These biomaterials behave as rubber-like materials showing high resilience at low strain and as shock-absorber-like materials at high strain by effectively dissipating energy. These properties are comparable to the passive elastic properties of muscles within the physiological range of sarcomere length and so these materials represent a new muscle-mimetic biomaterial. The mechanical properties of these biomaterials can be fine-tuned by adjusting the composition of the elastomeric proteins, providing the opportunity to develop biomaterials that are mimetic of different types of muscles. We anticipate that these biomaterials will find applications in tissue engineering as scaffold and matrix for artificial muscles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lv, Shanshan -- Dudek, Daniel M -- Cao, Yi -- Balamurali, M M -- Gosline, John -- Li, Hongbin -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 May 6;465(7294):69-73. doi: 10.1038/nature09024.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20445626" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocompatible Materials/chemical synthesis/*chemistry ; Biomechanical Phenomena ; Biomimetics/methods ; Biopolymers/*chemistry ; Connectin ; Drosophila melanogaster/genetics ; Elasticity ; Muscle Proteins/*chemistry ; Polyproteins/chemistry ; Protein Kinases/*chemistry ; Stress, Mechanical
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-05-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chaikof, Elliot L -- England -- Nature. 2010 May 6;465(7294):44-5. doi: 10.1038/465044a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20445620" target="_blank"〉PubMed〈/a〉
    Keywords: Biomimetic Materials/*chemistry ; Connectin ; Elasticity ; Muscle Proteins/chemistry ; Polymers/*chemistry ; Protein Kinases/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2009-05-22
    Description: Studies of membrane proteins have revealed a direct link between the lipid environment and the structure and function of some of these proteins. Although some of these effects involve specific chemical interactions between lipids and protein residues, many can be understood in terms of protein-induced perturbations to the membrane shape. The free-energy cost of such perturbations can be estimated quantitatively, and measurements of channel gating in model systems of membrane proteins with their lipid partners are now confirming predictions of simple models.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169427/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169427/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Phillips, Rob -- Ursell, Tristan -- Wiggins, Paul -- Sens, Pierre -- DP1 OD000217/OD/NIH HHS/ -- DP1 OD000217-05/OD/NIH HHS/ -- R01 GM084211/GM/NIGMS NIH HHS/ -- R01 GM084211-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 May 21;459(7245):379-85. doi: 10.1038/nature08147.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA. phillips@pboc.caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19458714" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/*chemistry/*metabolism ; Elasticity ; Ion Channels/metabolism ; Membrane Lipids/*metabolism ; Membrane Proteins/*metabolism ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2008-02-22
    Description: Rubbers exhibit enormous extensibility up to several hundred per cent, compared with a few per cent for ordinary solids, and have the ability to recover their original shape and dimensions on release of stress. Rubber elasticity is a property of macromolecules that are either covalently cross-linked or connected in a network by physical associations such as small glassy or crystalline domains, ionic aggregates or multiple hydrogen bonds. Covalent cross-links or strong physical associations prevent flow and creep. Here we design and synthesize molecules that associate together to form both chains and cross-links via hydrogen bonds. The system shows recoverable extensibility up to several hundred per cent and little creep under load. In striking contrast to conventional cross-linked or thermoreversible rubbers made of macromolecules, these systems, when broken or cut, can be simply repaired by bringing together fractured surfaces to self-heal at room temperature. Repaired samples recuperate their enormous extensibility. The process of breaking and healing can be repeated many times. These materials can be easily processed, re-used and recycled. Their unique self-repairing properties, the simplicity of their synthesis, their availability from renewable resources and the low cost of raw ingredients (fatty acids and urea) bode well for future applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cordier, Philippe -- Tournilhac, Francois -- Soulie-Ziakovic, Corinne -- Leibler, Ludwik -- England -- Nature. 2008 Feb 21;451(7181):977-80. doi: 10.1038/nature06669.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Matiere Molle et Chimie, UMR 7167 CNRS-ESPCI, Ecole Superieure de Physique et Chimie Industrielles, 10 rue Vauquelin, 75005 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18288191" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallization ; Elasticity ; Fatty Acids/chemistry ; Hydrogen Bonding ; Mechanics ; Rheology ; Rubber/*chemistry ; Temperature ; Urea/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2008-02-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mynar, Justin L -- Aida, Takuzo -- England -- Nature. 2008 Feb 21;451(7181):895-6. doi: 10.1038/451895a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18288172" target="_blank"〉PubMed〈/a〉
    Keywords: Biomedical Research ; Conservation of Natural Resources ; Elasticity ; Hydrogen Bonding ; Mechanics ; Rubber/*chemistry ; Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Am. Soc. Mech. Eng.
    In:  ASME, J. Basic Engineering, Luxembourg, Am. Soc. Mech. Eng., vol. 85, no. 8, pp. 519-527, pp. L12311, (ISBN 0-471-26610-8)
    Publication Date: 1963
    Keywords: Rock mechanics ; cracks and fractures (.NE. fracturing) ; Fracture ; criteria
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Am. Soc. Mech. Eng.
    In:  ASME publication, New York, Am. Soc. Mech. Eng., vol. 76-WA/PVP-7, no. B1, pp. 2-8, pp. L24306, (ISBN: 0534351875, 2nd edition)
    Publication Date: 1976
    Keywords: cracks and fractures (.NE. fracturing) ; Rock mechanics ; Energy (of earthquakes) ; Fracture
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Institute of Physics
    In:  Professional Paper, Boundary Element Methods. Theory and Application, Bristol, Institute of Physics, vol. 9, no. 16, pp. 1-23, (ISBN 1-4020-1729-4)
    Publication Date: 1986
    Keywords: Stress ; Rock mechanics ; Stress intensity factor ; Boundary Element Method ; Fracture ; ENDNOTE?
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Institute of Physics
    In:  Bristol, Institute of Physics, vol. 8, no. Publ. No. 12, pp. 95-104, (ISBN 0-865-42078-5)
    Publication Date: 1986
    Keywords: Rock mechanics ; Fracture ; Boundary Element Method ; Elasticity ; Dynamic
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...