ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Crustal deformation (cf. Earthquake precursor: deformation or strain)  (4)
  • 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy  (3)
  • 04.04. Geology  (3)
  • E62
  • Wiley  (7)
  • Am. Geophys. Union & Geol. Soc. Am.
  • Bonn: Institute for the Study of Labor (IZA)
  • 1
    Publication Date: 2022-06-22
    Description: Silicic calderas are volcanic systems whose unrest evolution is more unpredictable than other volcano types because they often do not culminate in an eruption. Their complex structure strongly influences the post-collapse volcano-tectonic evolution, usually coupling volcanism and ground deformation. Among such volcanoes, the Campi Flegrei caldera (southern Italy) is one of the most studied. Significant long- and short-term ground deformations characterize this restless volcano. Several studies performed on the marinecontinental succession exposed in the central sector of the Campi Flegrei caldera provided a reconstruction of ground deformation during the last 15 kyr. However, considering that over one-third of the caldera is presently submerged beneath the Pozzuoli Gulf, a comprehensive stratigraphic on-land-offshore framework is still lacking. This study aims at reconstructing the offshore succession through analysis of high-resolution single and multichannel reflection seismic profiles and correlates the resulting seismic stratigraphic framework with the stratigraphy reconstructed on-land. Results provide new clues on the causative relations between the intra-caldera marine and volcaniclastic sedimentation and the alternating phases of marine transgressions and regressions originated by the interplay between ground deformation and sea-level rise. The volcano-tectonic reconstruction, provided in this work, connects the major caldera floor movements to the large Plinian eruptions of Pomici Principali (12 ka) and Agnano Monte Spina (4.55 ka), with the onset of the first post-caldera doming at ~10.5 ka. We emphasize that ground deformation is usually coupled with volcanic activity, which shows a self-similar pattern, regardless of its scale. Thus, characterizing the long-term deformation history becomes of particular interest and relevance for hazard assessment and definition of future unrest scenarios.
    Description: Published
    Description: 855-882
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: offshore stratigraphy ; seismic units ; La Starza succession ; volcanism, ; 04.08. Volcanology ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-08
    Description: The response of continental forelands to subduction and collision is a widely investigated topic in geodynamics. The deformation occurring within a foreland shared by two opposite‐verging chains, however, is uncommon and poorly understood. The Apulia Swell in the southern end of the Adria microplate (Africa‐Europe plate boundary, central Mediterranean Sea) represents one of these cases, as it is the common foreland of the SW verging Albanides‐Hellenides and the NE verging Southern Apennines merging into the SSE verging Calabrian Arc. We investigated the internal deformation of the Apulia Swell using multiscale geophysical data: multichannel seismic profiles recording up to 12‐s two‐way time (TWT) for a consistent image of the upper crust; high‐resolution multichannel seismic profiles, high‐resolution multibeam bathymetry, and CHIRP profiles acquired by R/V OGS Explora to constrain the Quaternary geological record. The results of our analyses characterize the geometry of the South Apulia Fault System (SAFS), a 100‐km‐long and 12‐km‐wide structure attesting an extensional (and possibly transtensional) response of the foreland to the two contractional fronts. The SAFS consists of two NW‐SE right‐stepping master faults and several secondary structures. The SAFS activity spans from the Early Pleistocene through the Holocene, as testified by the bathymetric and high‐resolution seismic data, with long‐term slip rates in the range of 0.2–0.4 mm/yr. Considering the position within an area with few or none other active faults in the surroundings, the dimension, and the activity rates, the SAFS can be a candidate causative fault of the 20 February 1743, M 6.7, earthquake.
    Description: Italian Ministry for Education, University, and Research (MIUR), Premiale 2014 D. M. 291 03/05/2016.
    Description: Published
    Description: e2020TC006116
    Description: 2T. Deformazione crostale attiva
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: active tectonics ; apulia ; south apulia fault system ; 1743 earthquake ; marine geology ; stable continental region ; ionian sea ; active faults ; subsurface geology ; seismic interpretation ; 04.04. Geology ; 04.07. Tectonophysics ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-25
    Description: Tsunami deposits present an important archive for understanding tsunami histories and dynamics. Most research in this field has focused on onshore preserved remains, while the offshore deposits have received less attention. In 2009, during a coring campaign with theItalian Navy Magnaghi, four 1 m long gravity cores (MG cores) were sampled from the northern part of Augusta Bay, along a transect in 60 to 110 m water depth. These cores were taken in the same area where a core (MS06) was collected in 2007 about 2.3 km offshore Augusta at a water depth of 72 m below sea level. Core MS06 consisted of a 6.7 m long sequence that included 12 anomalous intervals interpreted as the primary effect of tsunami backwash waves in the last 4500 years. In this study, tsunami deposits were identified, based on sedimentology and displaced benthic foraminifera (as for core MS06) reinforced by X-ray fluorescence data. Two erosional surfaces (L1 and L2) were recognized coupled with grain size increase, abundant Posidonia oceanica seagrass remains and a significant amount of Nubecularia lucifuga, an epiphytic sessile benthic foraminifera considered to be transported from the inner shelf. The occurrence of Ti/Ca and Ti/Sr increments, coinciding with peaks in organic matter (Mo inc/coh) suggests terrestrial run-off coupled with an input of organic matter. The L1 and L2 horizons were attributed to two distinct historical tsunamis (AD 1542 and AD 1693) by indirect age-estimation methods using 210Pb profiles and the comparison of Volume Magnetic Susceptibility data between MG cores and MS06 cores. One most recent bioturbated horizon (Bh), despite not matching the above listed interpretative features, recorded an important palaeoenvironmental change that may correspond to the AD 1908 tsunami. These findings reinforce the value of offshore sediment records as an underutilized resource for the identification of past tsunamis.
    Description: Published
    Description: 1553-1576
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Eastern Sicily ; tsunami ; foraminifera ; sedimentology ; XRF core scanning ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-24
    Description: We propose a new quantitative approach for the joint interpretation of velocity and attenuation tomography images, performed through the lateral separation of scattering and intrinsic attenuation. The horizontal P-wave scattering attenuation structure below Campi Flegrei Caldera (CFC) is imaged using the autocorrelation functions (ACF) of P-wave vertical velocity fluctuations. Cluster analysis (CA) is then applied to interpret the images derived from ACF and the available P-wave total attenuation images at 2000m quantitatively. The analysis allows the separation of intrinsic and scattering attenuation on a 2-D plane, adding new geophysical constraints to the present knowledge about this volcanic area. The final result is a new, quantitative image of the past and present tectonic and volcanological state of CFC. P-wave intrinsic dissipation dominates in an area approximately located under the volcanic centre of Solfatara, as expected in a region with a large presence of fluids and gas. A north–south scattering attenuation region is mainly located below the zone of maximum uplift in the 1982–1984 bradiseismic crisis, in the sea side of the Pozzuoli bay, but also extending below Mt Nuovo. This evidence favours the interpretation in terms of a hard but fractured body, contoured by strong S-wave scatterers, corresponding to the Caldera rim: the region is possibly a section of the residual magma body, associated with the 1538 eruption of Mt Nuovo.
    Description: Published
    Description: 1304-1310
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Probability distributions ; Seismic attenuation ; Seismic tomography ; Statistical seismology ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We investigate in detail the crustal layering of the ‘Val di Chiana Basin’ (Northern Apennines, Tuscany, Italy) through receiver functions and seismic anisotropy with hexagonal symmetry. The teleseismic data set is recorded in correspondence of a typical foreland basin resulting by the progressive eastward retreat of a regional-scale subduction zone trapped between two continents. We study the azimuthal variations of the computed and binned receiver functions associated to a harmonic angular analysis to emphasize the presence of the dipping and the anisotropic structures. The resulting S-wave velocity model shows interesting and new results for this area that we discuss in a regional geodynamic contest contributing to the knowledge of the structure of the forearc of the subduction zone. A dipping interface (N192°E strike, 18° dip) has been revealed at about 1.5 km depth, that separates the basin sediments and flysch from the carbonates and evaporites. Moreover, we interpret the two upper-crust anisotropic layers (at about 6 and 17 km depth) as the Hercynian Phyllites and Micaschists, of the Metamorphic Tuscan Basement. At relatively shallow depths, the presence of these metamorphic rocks causes the seismic anisotropy in the upper crust. The presence of shallow anisotropic layers is a new and interesting feature, first revealed in the study area. Beneath the crust–mantle transition (Moho), located about 28 km depth, our analysis reveals a 7-km-thick anisotropic layer.
    Description: Published
    Description: 545-556
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic anisotopy ; Computational Seismology ; Wave propagation ; Subduction zone process ; Crustal structure ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We present the surface wave dispersion results of the application of the ambient noise method to broad-band data recorded at 114 stations from the Istituto Nazionale di Geofisica e Vul- canologia (INGV) national broad-band network, some stations of the Mediterranean Very Broadband Seismographic Network (MedNet) and of the Austrian Central Institute for Me- teorology and Geodynamics (ZAMG). Vertical-component ambient noise data from 2005 October to 2007 March have been cross-correlated for station-pairs to estimate fundamental mode Rayleigh wave Green’s functions. Cross-correlations are calculated in 1-hr segments, stacked over periods varying between 3 months and 1.5 yr. Rayleigh wave group dispersion curves at periods from 8 to 44 s were determined using the multiple-filter analysis technique. The study region was divided into a 0.2◦ × 0.2◦ grid to invert for group velocity distribu- tions. Checkerboard tests were first carried out, and the lateral resolution was estimated to be about 0.6◦. The resulting group velocity maps from 8 to 36 s show the significant difference of the crustal structure and good correlations with known geological and tectonic features in the study region. The Po Plain and the Southern Alps evidence lower group veloci- ties due to soft alluvial deposits, and thick terrigenous sediments. Our results also clearly showed that the Tyrrhenian Sea is characterized with much higher velocities below 8 km than the Italian peninsula and the Adriatic Sea which indicates a thin oceanic crust beneath the Tyrrhenian Sea.
    Description: Published
    Description: 1242-1252
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Tomography ; Surface waves and free oscillations ; Crustal structure ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Am. Geophys. Union & Geol. Soc. Am.
    In:  Bull., Polar Proj. OP-O3A4, Dynamics of Passive Margins, Berlin, Am. Geophys. Union & Geol. Soc. Am., vol. 24, no. 4, pp. 159-165, (ISBN 0080419208)
    Publication Date: 1982
    Keywords: Geothermics ; Tectonics ; Crustal deformation (cf. Earthquake precursor: deformation or strain) ; Plate tectonics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Am. Geophys. Union & Geol. Soc. Am.
    In:  Bull., Open-File Rept., Dynamics of Passive Margins, Washington, D.C., Am. Geophys. Union & Geol. Soc. Am., vol. 24, no. 16, pp. 184-196, (ISBN 1-86239-165-3, vi + 330 pp.)
    Publication Date: 1982
    Keywords: Plate tectonics ; passive ; margins ; Crustal deformation (cf. Earthquake precursor: deformation or strain) ; Geol. aspects
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Am. Geophys. Union & Geol. Soc. Am.
    In:  Washington, Am. Geophys. Union & Geol. Soc. Am., vol. 1, pp. 6322, (ISBN 0-521-79203-7)
    Publication Date: 1980
    Keywords: Plate tectonics ; Dynamic ; Stress ; Tectonics ; Handbook of geophysics ; Geol. aspects ; CRUST ; Crustal deformation (cf. Earthquake precursor: deformation or strain) ; Gravimetry, Gravitation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Wiley
    In:  New York, 571 pp., Wiley, vol. 5, no. XVI:, pp. 1-14, (ISBN 0-89871-521-0)
    Publication Date: 1976
    Keywords: Structural geology ; Textbook of geology ; Stress ; Geol. aspects ; Crustal deformation (cf. Earthquake precursor: deformation or strain)
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...