ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
  • 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations
  • Springer  (3)
  • Birkhauser  (2)
  • Akadémiai Kiadò  (1)
  • American Chemical Society (ACS)
  • American Institute of Physics (AIP)
Collection
Keywords
Years
  • 1
    Publication Date: 2021-01-27
    Description: In this work we report new data on He abundances and isotope ratios (3He/4He) from gas associated to some thermal and CO2-rich mineral waters in N-Portugal. Collected gas samples are mainly CO2-dominant except two sites where gas is N2-rich. All the sampling sites are characterized by exceptionally high helium contents with 3He/4He ratios, corrected for air contamination, varying considerably from 0.09 to 2.68 Ra. In all sites, the 3He/4He ratios are higher than that typical for stable continental areas thus indicating a variable but not-negligible (up to 30%) contribution of mantle-derived primordial He. In all the CO2-rich waters, CO2/3He ratios and 13CCO2 are comparable with mantle values, thus suggesting a magmatic origin also for CO2. On the contrary, in the N2-rich waters He is mainly radiogenic, and CO2 is organic in origin. Since no recent volcanic activity is observed in NW Iberia, high 3He/4He values could be due, at least, to three processes: a) releasing of gas from the local upper mantle through deep extensional fault systems; b) releasing of magmatic volatiles from crustal reservoir(s) formed during past volcanic activity; c) degassing of a subsurface emplaced magma body. Mantle He flux in N-Portugal has been estimated to be up to 3 orders of magnitude higher than that typical for stable continental areas, thus suggesting, in this area, the presence of a tensional tectonic regime. This implies that mantle gases could migrate upward probably through inherited tectonic structures reactivated by neotectonic activity. The third possible scenario seems to be less plausible since seismic surveys carried out in NW Iberian did not find any significant evidence of mantle intrusion in the crust. The observed spatial variability in mantle-derived contribution could reflect the geometry of the granitic plutons in this area, thus supporting the hypotheses of an upper mantle degassing. Alternatively, it could be the result of a lateral migration of magmatic volatiles stored in a crustal reservoir.
    Description: Published
    Description: Budapest, Hungary
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: Helium isotopes ; NW Iberian peninsula ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Hydrochemical (major and some minor constituents), stable isotope (dDH2O and d18OH2O; d13CTDIC total dissolved inorganic carbon) and dissolved gas composition have been determined on 33 thermal discharges located throughout Sicily (Italy) and its adjacent islands. On the basis of major ion contents, four main water types have been distinguished: (1) a Na-Cl type; (2) a Ca-Mg〉Na- SO4-Cl type; (3) a Ca-Mg-HCO3 type and (4) a Na-HCO3 type water. Most waters are meteoric in origin or resulting from mixing between meteoric water and heavy-isotope end members. In some samples, d18O values reflect the effects of equilibrium processes between thermal waters and rocks (positive 18O-shift) or thermal waters and CO2 (negative 18O-shift). Dissolved gas composition indicates the occurrence of gas/ water interaction processes in thermal aquifers. N2/O2 ratios higher than air-saturated water (ASW), suggest the presence of geochemical processes responsible for dissolved oxygen consumption. High CO2 contents (more than 3000 cc/litre STP) dissolved in the thermal waters indicate the presence of an external source of carbon dioxide-rich gas. TDIC content and d13CTDIC show very large ranges from 4.6 to 145.3 mmol/Kg and from )10.0& and 2.8&, respectively. Calculated values indicate the significant contribution from a deep source of carbon dioxide inorganic in origin. Interaction with Mediterranean magmatic CO2 characterized by heavier carbon isotope ratios (d13CCO2 value from )3 to 0& vs V-PDB (CAPASSO et al., 1997, GIAMMANCO et al., 1998; INGUAGGIATO et al., 2000) with respect to MORB value and/ or input of CO2-derived from thermal decomposition of marine carbonates have been inferred.
    Description: Published
    Description: 781-807
    Description: JCR Journal
    Description: reserved
    Keywords: Thermal waters, ; chemical and isotope composition, ; dissolved gases ; d13C ; Sicily. ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Microgravity observations at Mt. Etna have been routinely performed as both discrete (since 1986) and continuous (since 1998) measurements. In addition to describing the methodology for acquiring and reducing gravity data from Mt. Etna, this paper provides a collection of case studies aimed at demonstrating the potential of microgravity to investigate the plumbing system of an active volcano and detect forerunners to paroxysmal volcanic events. For discrete gravity measurements, results from 1994– 1996 and 2001 are reported. During the first period, the observed gravity changes are interpreted within the framework of the Strombolian activity which occurred from the summit craters. Gravity changes observed during the first nine months of 2001 are directly related to subsurface mass redistributions which preceded, accompanied and followed the July-August 2001 flank eruption of Mt. Etna. Two continuous gravity records are discussed: a 16-month (October 1998 to February 2000) sequence and a 48-hour (26–28 October, 2002) sequence, both from a station within a few kilometers of the volcano’s summit. The 16-month record may be the longest continuous gravity sequence ever acquired at a station very close to the summit zone of an active volcano. By cross analyzing it with contemporaneous discrete observations along a summit profile of stations, both the geometry of a buried source and its time evolution can be investigated. The shorter continuous sequence encompasses the onset of an eruption from a location only 1.5 km from the gravity station. This gravity record is useful for establishing constraints on the characteristics of the intrusive mechanism leading to the eruption. In particular, the observed gravity anomaly indicates that the magma intrusion occurred ‘‘passively’’ within a fracture system opened by external forces.
    Description: Published
    Description: 769-790
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; microgravity ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: A wide set of dynamics phenomena (i.e., geodynamics, Post Glacial Rebound, seismicity and volcanic activity) can produce time gravity changes, which spectrum varies from short (1… 10 s) to long (more than 1 year) periods. The amplitude of the gravity variations is generally in the order of 10 8…10 9 g, consequently their detection requires instruments with high sensitivity and stability: then, high quality experimental data. Spring and superconducting gravimeters are intensively used with this target and they are frequently jointed with tiltmeters recording stations in order to measure the elastogravitational perturbation of the Earth. The far-field effects produced by large earthquakes on records collected by spring gravimeters and tiltmeters are investigated here. Gravity and tilt records were analyzed on time windows spanning the occurrence of large worldwide earthquakes; the gravity records have been collected on two stations approximately 600 km distant. The background noise level at the stations was characterized, in each season, in order to detect a possible seasonal dependence and the presence of spectral components which could hide or mask other geophysical signals, such as, for instance, the highest mode of the Seismic Free Oscillation (SFO) of the Earth. Some spectral components (6.5’; 8’; 9’; 14’, 20’, 51’) have been detected in gravity and tilt records on the occasion of large earthquakes and the effect of the SFO has been hypothesized. A quite different spectral content of the EW and NS tiltmeter components has been detected and interpreted as a consequence of the radiation pattern of the disturbances due to the earthquakes. Through the analysis of the instrumental sensitivity, instrumental effects have been detected for gravity meters at very low frequency.
    Description: Published
    Description: 1379–1397
    Description: partially_open
    Keywords: Gravimeters ; seismic free oscillation ; earthquakes ; tiltmeters ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 436 bytes
    Format: 541391 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: For 5 months before the 2001 Mt. Etna eruption, a progressive gravity decrease was measured along a profile of stations on the southern slope of the volcano. Between January and July 2001, the amplitude of the change reached 80 μGal, while the wavelength of the anomaly was of the order of 15 km. Elevation changes observed through GPS measurements during a period encompassing the 5-month gravity decrease, remained within 4–6 cm over the entire volcano and within 2–4 cm in the zone covered by the microgravity profile. We review both gravity and elevation changes by a model assuming the formation of new cracks, uniformly distributed in a rectangular prism. The inversion problem was formulated following a global optimization approach based on the use of Genetic Algorithms. Although it is possible to explain the observed gravity changes by means of the proposed analytical formulation, the results show that calculated elevation changes are significantly higher than those observed. Two alternative hypotheses are proposed to account for this apparent discrepancy: (1) that the assumptions behind the analytical formulation, used to invert the data, are fallacious at Etna, and thus, numerical models should be utilized; (2) that a second process, enabling a considerable mass decrease to occur without deformation, acted together with the formation of new cracks in the source volume.
    Description: Published
    Description: 553–562
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: reserved
    Keywords: Gravity ; Elastic modeling ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-02-16
    Description: A new estimate of global methane emission into the atmosphere from mud volcanoes (MVs) on land and shallow seafloor is presented. The estimate, considered a lower limit, is based on 1) new direct measurements of flux, including both venting of methane and diffuse microseepage around craters and vents, and 2) a classification of MV sizes in terms of area (km2) based on a compilation of data from 120 MVs. The methane flux to the atmosphere is conservatively estimated between 6 and 9 Mt y)1. This emission from MVs is 3–6% of the natural methane sources and is comparable with ocean and hydrate sources, officially considered in the atmospheric methane budget. The total geologic source, including MVs, seepage from seafloor, microseepage in hydrocarbon-prone areas and geothermal sources, would amount to 35–45 Mt y)1. The authors believe it is time to add this parameter in the Intergovernmental Panel on Climate Change official tables of atmospheric methane sources.
    Description: Published
    Description: 997-1002
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Methane ; Mud volcanoes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...