ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (16)
  • Mikrobiologie
  • INGV  (9)
  • Agu  (6)
  • Nature Publishing Group  (3)
Collection
Keywords
Years
  • 1
    Journal cover
    Unknown
    Nature Publishing Group | ISME (International Society for Microbial Ecology)
    Online: 1.2007 –
    Publisher: Nature Publishing Group , ISME (International Society for Microbial Ecology)
    Corporation: International Society for Microbial Ecology, ISME
    Print ISSN: 1751-7362
    Electronic ISSN: 1751-7370
    Topics: Biology
    Keywords: Mikrobiologie
    Parallel titles: The ISME Journal
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Journal cover
    Unknown
    Nature Publishing Group | ISME (International Society for Microbial Ecology), PubMed Central
    Online: 1.2007 – (older than 12 months)
    Publisher: Nature Publishing Group , ISME (International Society for Microbial Ecology), PubMed Central
    Corporation: International Society for Microbial Ecology, ISME
    Print ISSN: 1751-7362
    Electronic ISSN: 1751-7370
    Topics: Biology
    Keywords: Mikrobiologie
    Parallel titles: The ISME Journal
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We investigate the dynamic traction evolution during the spontaneous propagation of a 3-D earthquake rupture governed by slip-weakening or rate- and state-dependent constitutive laws and accounting for thermal pressurization effects. The analytical solutions as well as temperature and pore pressure evolutions are discussed in the companion paper by Bizzarri and Cocco. Our numerical experiments reveal that frictional heating and thermal pressurization modify traction evolution. The breakdown stress drop, the characteristic slip-weakening distance, and the fracture energy depend on the slipping zone thickness (2w) and hydraulic diffusivity (w). Thermally activated pore pressure changes caused by frictional heating yield temporal variations of the effective normal stress acting on the fault plane. In the framework of rate- and state-dependent friction, these thermal perturbations modify both the effective normal stress and the friction coefficient. Breakdown stress drop, slip-weakening distance, and specific fracture energy (J/m2) increase for decreasing values of hydraulic diffusivity and slipping zone thickness. We propose scaling relations to evaluate the effect of w and w on these physical parameters. We have also investigated the effects of choosing different evolution laws for the state variable. We have performed simulations accounting for the porosity evolution during the breakdown time. Our results point out that thermal pressurization modifies the shape of the slip-weakening curves. For particular configurations, the traction versus slip curves display a gradual and continuous weakening for increasing slip: in these cases, the definitions of a minimum residual stress and the slip-weakening distance become meaningless.
    Description: Published
    Description: B05304
    Description: JCR Journal
    Description: reserved
    Keywords: thermal pressurization ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We show that the low-pass filtered, peak amplitudes of initial P- and S-wave seismic signals recorded in the vicinity of an occurring earthquake source correlates with the earthquake magnitude and may be used for real-time estimation of the event size in seismic early warning applications. The earthquake size can be therefore estimated using only a couple of seconds of signal from the P- or S-wave onsets, i.e. while the rupture itself is still propagating and rupture dimension is far from complete. We argue that dynamic stress release and/or slip duration on the fault in the very early stage of seismic fracture, scales both with the observed peak amplitude and with the elastic energy available for fracture propagation. The probability that a fracture grows to a larger size should scale with the energy initially available.
    Description: Published
    Description: L23312
    Description: JCR Journal
    Description: partially_open
    Keywords: Earthquake ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We investigate the role of frictional heating and thermal pressurization on earthquake ruptures by modeling the spontaneous propagation of a three-dimensional (3-D) crack on a planar fault governed by assigned constitutive laws and allowing the evolution of effective normal stress. We use both slip-weakening and rate- and state-dependent constitutive laws; in this latter case we employ the Linker and Dieterich evolution law for the state variable, and we couple the temporal variations of friction coefficient with those of effective normal stress. In the companion paper we investigate the effects of thermal pressurization on the dynamic traction evolution. We solve the 1-D heat conduction equation coupled with Darcy’s law for fluid flow in porous media. We obtain a relation that couples pore fluid pressure to the temperature evolution on the fault plane. We analytically solve the thermal pressurization problem by considering an appropriate heat source for a fault of finite thickness. Our modeling results show that thermal pressurization reduces the temperature increase caused by frictional heating. However, the effect of the slipping zone thickness on temperature changes is stronger than that of thermal pressurization, at least for a constant porosity model. Pore pressure and effective normal stress evolution affect the dynamic propagation of the earthquake rupture producing a shorter breakdown time and larger breakdown stress drop and rupture velocity. The evolution of the state variable in the framework of rate- and state-dependent friction laws is very different when thermal pressurization is active. In this case the evolution of the friction coefficient differs substantially from that inferred from a slip-weakening law. This implies that the traction evolution and the dynamic parameters are strongly affected by thermal pressurization.
    Description: Published
    Description: B05303
    Description: JCR Journal
    Description: reserved
    Keywords: thermal pressurization ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We analyze the coseismic stress perturbation during the 17 June 2000 south Iceland seismic sequence; the main shock (Ms 6.6) was followed by three large events within a few tens of seconds (8, 26, and 30 s) located within 80 km. The aim of this paper is to investigate short-term fault interaction and instantaneous triggering. This happens when a fault perturbed by a stress change fails before the end of the transient stress perturbation. We compute the shear, normal, and Coulomb stress changes as functions of time in a stratified elastic half-space by using discrete wave number and reflectivity methods. We calculate dynamic stresses caused by the main shock at the hypocenters of these three subsequent events. Our numerical results show that the onset of the last two events is slightly delayed with respect to the arrival time of the second positive peak of Coulomb stress variation, while the first event occurred after the first positive stress peak. We have also analyzed the response of a spring slider system representing a fault governed by a rate- and state-dependent friction law, perturbed by shear and normal stress variations caused by the main shock. The fault response to the computed stress perturbations is always clock advanced. We have found suitable constitutive parameters of the modeled fault that allow the instantaneous dynamic triggering of these three earthquakes. If the initial sliding velocity is comparable with the tectonic loading velocity, we obtained failure times close to the observed origin times for low values of the initial effective normal stress.
    Description: Published
    Description: B03302
    Description: JCR Journal
    Description: reserved
    Keywords: seismic sequence ; Iceland ; 2000 ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We image the rupture history of the 2009 L’Aquila (Central Italy) earthquake using a nonlinear joint inversion of strong motion and GPS data. This earthquake ruptured a normal fault striking along the Apennines axis and dipping to the SW. The inferred slip distribution is heterogeneous and characterized by a small, shallow slip patch located up-dip from the hypocenter (9.5 km depth) and a large, deeper patch located southeastward. The rupture velocity is larger in the up-dip than in the along-strike direction. This difference can be partially accounted by the crustal structure, which is characterized by a high velocity layer above the hypocenter and a lower velocity below. The latter velocity seems to have affected the along strike propagation since the largest slip patch is located at depths between 9 and 14 km. The imaged slip distribution correlates well with the on-fault aftershock pattern as well as with mapped surface breakages.
    Description: Published
    Description: L19304
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: 2009 L'Aquila earthquake ; kinematic inversion ; joint inversion ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: (extended abstract)
    Description: INGV, Regione Sicilia, Ministero Sviluppo Economico
    Description: Published
    Description: Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Sicily
    Description: open
    Keywords: Geodynamics ; Volcano-seismic correlation ; Seismic and volcanic risk ; Earth rotation and volcano-seismic events ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.02. Earth rotation ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-04
    Description: In this work we present a 3D Finite Difference numerical method to model the dynamic spontaneous propagation of an earthquake rupture on planar faults in an elastic half-space. We implement the Traction-at-Split-Nodes fault boundary condition for a system of faults, either vertical or oblique, using different constitutive laws. We can adopt both a slip-weakening law to prescribe the traction evolution within the breakdown zone or rate- and state-dependent friction laws, which involve the choice of an evolution relation for the state variable. Our numerical procedure allows the use of oblique and heterogeneous distribution of initial stress and allows the rake rotation. This implies that the two components of slip velocity and total dynamic traction are coupled together to satisfy, in norm, the adopted constitutive law. The simulations presented in this study show that the rupture acceleration to super-shear crack speeds occurs along the direction of the imposed initial stress; the rupture front velocity along the perpendicular direction is slower than that along the pre-stress direction. Depending on the position on the fault plane the orientation of instantaneous total dynamic traction can change with time with respect to the imposed initial stress direction. These temporal rake rotations depend on the amplitude of initial stress and on its distribution on the fault plane. They also depend on the curvature and direction of the rupture front with respect to the imposed initial stress direction: this explains why rake rotations are mostly located near the rupture front and within the cohesive zone.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: earthquake dynamics ; numerical modeling ; friction laws ; slip time history ; rake rotation ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3521621 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-11-04
    Description: We investigate the effects of non-uniform distribution of constitutive parameters on the dynamic propagation of an earthquake rupture. We use a 2D finite difference numerical method and we assume that the dynamic rupture propagation is governed by a rate- and state-dependent constitutive law. We first discuss the results of several numerical experiments performed with different values of the constitutive parameters a (to account for the direct effect of friction), b (controlling the friction evolution) and L (the characteristic length-scale parameter) to simulate the dynamic rupture propagation on homogeneous faults. Spontaneous dynamic ruptures can be simulated on velocity weakening (a 〈 b) fault patches: our results point out the dependence of the traction and slip velocity evolution on the adopted constitutive parameters. We therefore model the dynamic rupture propagation on heterogeneous faults. We use in this study the characterization of different frictional regimes proposed by Boatwright and Cocco (1996) based on different values of the constitutive parameters a, b and L. Our numerical simulations show that the heterogeneities of the L parameter affect the dynamic rupture propagation, control the peak slip velocity and weakly modify the dynamic stress drop and the rupture velocity. Moreover, a barrier can be simulated through a large contrast of L parameter. The heterogeneity of a and b parameters affects the dynamic rupture propagation in a more complex way. A velocity strengthening area (a 〉 b) can arrest a dynamic rupture, but can be driven to an instability if suddenly loaded by the dynamic rupture front. Our simulations provide a picture of the complex interactions between fault patches having different frictional properties and illustrate how the traction and slip velocity evolutions are modified during the propagation on heterogeneous faults. These results involve interesting implications for slip duration and fracture energy.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: dynamic rupture ; fault constitutive law ; fault friction ; stress heterogeneities ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1860698 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...