ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks  (2)
  • 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
  • Agu  (3)
  • American Institute of Physics
  • Molecular Diversity Preservation International
Collection
Keywords
Years
  • 1
    Publication Date: 2017-04-04
    Description: A key consequence of the presence of microcracks within rock is their significant influence upon elastic anisotropy and transport properties. Here two rock types (a basalt and a granite) with contrasting microstructures, dominated by microcracks, have been investigated using an advanced experimental arrangement capable of measuring porosity, P wave velocity, S wave velocity, and permeability contemporaneously at effective pressures up to 100 MPa. Using the Kachanov (1994) noninteractive effective medium theory, the measured elastic wave velocities are inverted using a least squares fit, permitting the recovery of the evolution of crack density and aspect ratio with increasing isostatic pressure. Overall, the agreement between measured and predicted velocities is good, with average error less than 0.05 km/s. At larger scales and above the percolation threshold, macroscopic fluid flow also depends on the crack density and aspect ratio. Using the permeability model of Gue´guen and Dienes (1989) and the crack density and aspect ratio recovered from the elastic wave velocity inversion, we successfully predict the evolution of permeability with pressure for direct comparison with the laboratory measurements. We also calculate the evolution of the crack porosity with increasing isostatic pressure, on the basis of the calculated crack density, and compare this directly with the experimentally measured porosity. These combined experimental and modeling results illustrate the importance of understanding the details of how rock microstructures change in response to an external stimulus when predicting the simultaneous evolution of rock physical properties.
    Description: Published
    Description: B04202
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: open
    Keywords: microcracked ; rocks ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The silicate parageneses of variably retrogressed eclogites are extensively used by metamorphic petrologists to reconstruct the tectonometamorphic evolution of ophiolitesbearing units and high-pressure continental tectonic slices in orogenic belts from initial burial to exhumation. On the other hand, the opaque mineralogy of these rocks is generally not studied in detail although the characterization of Fe-Ti oxides and sulphides in metabasites has a great potential [Clark, 1997; Dunlop and O¨ zdemir, 1997; Frost, 1991b] to better understand the processes controlling the formation and stability of magnetic minerals (mainly magnetite and pyrrhotite) in subduction zones and collisional orogens and to improve geological interpretation of magnetic survey data. [3] The Hercynian basement of northern Sardinia provides a case study to define the relationships between metamorphic evolution and magnetic properties of eclogite and amphibolite facies metabasites in a number of structurally and petrologically well-studied outcrops within a representative crustal section of the southern European Variscan belt. [4] To characterize the magnetic properties of these rocks, we conducted a series of minero-petrographical analyses and mineral magnetic measurements on a suite of samples representative of all the main mafic/ultramafic lenses of the region. In this study, we report on new data and interpretations which are essential (1) to characterize and to verify primary and secondary oxide contributions to the overall magnetization, (2) to link the stability/instability of magnetic assemblages to specific metamorphic stages, and (3) to provide a preliminary regional-scale perspective on the level of magnetization in all the main metamorphic mafic rock units of the Hercynian orogenic belt in northern Sardinia.
    Description: Published
    Description: B12S26
    Description: reserved
    Keywords: Magnetic ; Sardinia ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Agu
    In:  Froger, J.-L., O. Merle, and P. Briole (2001), Active spreading and regional extension at Mount Etna imaged by SAR interferometry, Earth Planet. Sci. Lett., 187, 245–258. Gvirtzman, Z., and A. Nur (1999), The formation of Mount Etna as the consequence of slab rollback, Nature, 401, 782–785. Leslie, S. C., G. F. Moore, J. K. Morgan, and D. J. Hills (2002), Seismic stratigraphy of the frontal Hawaiian moat: Implications for sedimentary processes at the leading edge of an oceanic hotspot trace, Mar. Geol., 184, 143–162. Lundgren, P., F. Casu, M. Manzo, A. Pepe, P. Berardino, E. Sansosti, and R. Lanari (2004), Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry, Geophys. Res. Lett., 31, L04602, doi:10.1029/2003GL018736. Maramai, A., L. Graziani, G. Alessio, P. Burrato, L. Colini, L. Cucci, R. Nappi, A. Nardi, and G.Vilardo (2005), Near- and far-field survey report of the 30 December 2002 Stromboli (Southern Italy) tsunami, Mar. Geol., 215, 93– 106. Moore, J. G., D. A. Clague, R. T. Holcomb, P. W. Lipman, W. R. Normak, and M. E. Torresan (1989), Prodigious submarine landslides on the Hawaiian ridge, J. Geophys. Res., 94, 17,465–17,484. Morgan, J. K., F. M. Moore, J. Hills, and S. Leslie (2000), Overthrusting and sediment accretion along Kilauea’s mobile south flank, Hawaii: Evidence for volcanic spreading from marine seismic reflection data, Geology, 28, 667–670. Monaco, C., P. Tapponier, L. Tortorici, and P. Y. Gillot (1997), Late quaternary slip-rates on the Acireale-Piedimonte normal fault and tectonic origin of Mt. Etna (Sicily), Earth Planet. Sci. Lett., 147, 125– 139. Nicolich, R., M. Laigle, A. Hirn, L. Cernobori, and J. Gallart (2000), Crustal structure of the Ionian margin of Sicily: Etna volcano in the frame of regional evolution, Tectonophysics, 329, 121– 139. Romano, R., and C. Sturiale (1982), The historical eruptions of Mt. Etna (volcanological data), in Mt. Etna Volcano, edited by R. Romano, Mem. Soc. Geol. It., 23, 75–97. von Huene, R., C. R. Ranero, and P. Watts (2004), Tsunamigenic slope failure along Middle America Trench in two tectonic settings, Mar. Geol., 203, 303– 317. Yilmaz, O. (1987), Seismic data processing, Invest. Geophys., vol. 2, Soc. of Explor. Geophys., 562 pp., Tulsa, Okla.
    Publication Date: 2017-04-04
    Description: High resolution seismic data, we collected in the Ionian sea, reveal large submarine landslide deposits offshore from Mt. Etna (Italy), spatially consistent with the eastern flank collapse of this volcano. A large debris-avalanche deposit, we relate to the Valle del Bove scar, displays long offshore run-outs (till 20 km) and a volume of a few tens of cubic kilometres (16–21 km3). Other landslide deposits are also imaged, in particular a striking unique record of the relative timing of multiple submarine large slump events.
    Description: Published
    Description: L13302
    Description: JCR Journal
    Description: reserved
    Keywords: submarine landslides ; Mt. Etna ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Italy has a strong geothermal potential for power generation, although, at present, the only two geothermal fields being exploited are Larderello-Travale/Radicondoli and Mt. Amiata in the Tyrrhenian pre-Apennine volcanic district of Southern Tuscany. A new target for geothermal exploration and exploitation in Italy is represented by the Southern Tyrrhenian submarine volcanic district, a geologically young basin (Upper Pliocene-Pleistocene) characterised by tectonic extension where many seamounts have developed. Heat-flow data from that area show significant anomalies comparable to those of onshore geothermal fields. Fractured basaltic rocks facilitate seawater infiltration and circulation of hot water chemically altered by rock/water interactions, as shown by the widespread presence of hydrothermal deposits. The persistence of active hydrothermal activity is consistently shown by many different sources of evidence, including: heat-flow data, gravity and magnetic anomalies, widespread presence of hydrothermal-derived gases (CO2, CO, CH4), 3He/4He isotopic ratios, as well as broadband OBS/H seismological information, which demonstrates persistence of volcano-tectonic events and High Frequency Tremor (HFT). The Marsili and Tyrrhenian seamounts are thus an important—and likely long-lasting-renewable energy resource. This raises the possibility of future development of the world’s first offshore geothermal power plant.
    Description: Published
    Description: 4068-4086
    Description: 3A. Ambiente Marino
    Description: JCR Journal
    Description: open
    Keywords: Marsili seamount ; hydrothermal circulation ; geothermal resource ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...