ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes  (3)
  • 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
  • Molecular Diversity Preservation International  (3)
  • Agu  (2)
  • American Institute of Physics
Collection
Keywords
Years
  • 1
    Publication Date: 2021-06-30
    Description: In the present work, the Differential SAR Interferometry (DInSAR) technique has been applied to study the surface movements affecting the sedimentary basin of Cassino municipality. Two datasets of SAR images, provided by ERS 1-2 and Envisat missions, have been acquired from 1992 to 2010. Such datasets have been processed independently each other and with different techniques nevertheless providing compatible results. DInSAR data show a subsidence rate mostly located in the northeast side of the city, with a subsidence rate decreasing from about 5–6 mm/yr in the period 1992–2000 to about 1–2 mm/yr between 2004 and 2010, highlighting a progressive reduction of the phenomenon. Based on interferometric results and geological/geotechnical observations, the explanation of the detected movements allows to confirm the anthropogenic (surface effect due to building construction) and geological causes (thickness and characteristics of the compressible stratum)
    Description: Published
    Description: 9676-9690
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: open
    Keywords: Differential SAR Interferometry; SBAS; IPTA; Cassino plain; subsidence ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Agu
    In:  Froger, J.-L., O. Merle, and P. Briole (2001), Active spreading and regional extension at Mount Etna imaged by SAR interferometry, Earth Planet. Sci. Lett., 187, 245–258. Gvirtzman, Z., and A. Nur (1999), The formation of Mount Etna as the consequence of slab rollback, Nature, 401, 782–785. Leslie, S. C., G. F. Moore, J. K. Morgan, and D. J. Hills (2002), Seismic stratigraphy of the frontal Hawaiian moat: Implications for sedimentary processes at the leading edge of an oceanic hotspot trace, Mar. Geol., 184, 143–162. Lundgren, P., F. Casu, M. Manzo, A. Pepe, P. Berardino, E. Sansosti, and R. Lanari (2004), Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry, Geophys. Res. Lett., 31, L04602, doi:10.1029/2003GL018736. Maramai, A., L. Graziani, G. Alessio, P. Burrato, L. Colini, L. Cucci, R. Nappi, A. Nardi, and G.Vilardo (2005), Near- and far-field survey report of the 30 December 2002 Stromboli (Southern Italy) tsunami, Mar. Geol., 215, 93– 106. Moore, J. G., D. A. Clague, R. T. Holcomb, P. W. Lipman, W. R. Normak, and M. E. Torresan (1989), Prodigious submarine landslides on the Hawaiian ridge, J. Geophys. Res., 94, 17,465–17,484. Morgan, J. K., F. M. Moore, J. Hills, and S. Leslie (2000), Overthrusting and sediment accretion along Kilauea’s mobile south flank, Hawaii: Evidence for volcanic spreading from marine seismic reflection data, Geology, 28, 667–670. Monaco, C., P. Tapponier, L. Tortorici, and P. Y. Gillot (1997), Late quaternary slip-rates on the Acireale-Piedimonte normal fault and tectonic origin of Mt. Etna (Sicily), Earth Planet. Sci. Lett., 147, 125– 139. Nicolich, R., M. Laigle, A. Hirn, L. Cernobori, and J. Gallart (2000), Crustal structure of the Ionian margin of Sicily: Etna volcano in the frame of regional evolution, Tectonophysics, 329, 121– 139. Romano, R., and C. Sturiale (1982), The historical eruptions of Mt. Etna (volcanological data), in Mt. Etna Volcano, edited by R. Romano, Mem. Soc. Geol. It., 23, 75–97. von Huene, R., C. R. Ranero, and P. Watts (2004), Tsunamigenic slope failure along Middle America Trench in two tectonic settings, Mar. Geol., 203, 303– 317. Yilmaz, O. (1987), Seismic data processing, Invest. Geophys., vol. 2, Soc. of Explor. Geophys., 562 pp., Tulsa, Okla.
    Publication Date: 2017-04-04
    Description: High resolution seismic data, we collected in the Ionian sea, reveal large submarine landslide deposits offshore from Mt. Etna (Italy), spatially consistent with the eastern flank collapse of this volcano. A large debris-avalanche deposit, we relate to the Valle del Bove scar, displays long offshore run-outs (till 20 km) and a volume of a few tens of cubic kilometres (16–21 km3). Other landslide deposits are also imaged, in particular a striking unique record of the relative timing of multiple submarine large slump events.
    Description: Published
    Description: L13302
    Description: JCR Journal
    Description: reserved
    Keywords: submarine landslides ; Mt. Etna ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Finding the geometry of aquifers in an active volcano is important for evaluating the hazards associated with phreatomagmatic phenomena and incidentally to address the problem of water supply. A combination of electrical resistivity tomography (ERT), self-potential, CO2, and temperature measurements provides insights about the location and pattern of ground water flow at Stromboli volcano. The measurements were conducted along a NE-SW profile across the island from Scari to Ginostra, crossing the summit (Pizzo) area. ERT data (electrode spacing 20 m, depth of penetration of 200 m) shows the shallow architecture through the distribution of the resistivities. The hydrothermal system is characterized by low values of the resistivity (〈50 W m) while the surrounding rocks are resistive (〉2000 W m) except on the North-East flank of the volcano where a cold aquifer is detected at a depth of 80 m (resistivity in the range 70–300 W m). CO2 and temperature measurements corroborate the delineation of the hydrothermal body in the summit part of the volcano while a negative self-potential anomaly underlines the position of the cold aquifer.
    Description: Published
    Description: L17304
    Description: JCR Journal
    Description: reserved
    Keywords: hydrogeology ; Stromboli volcano ; CO2 ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Italy has a strong geothermal potential for power generation, although, at present, the only two geothermal fields being exploited are Larderello-Travale/Radicondoli and Mt. Amiata in the Tyrrhenian pre-Apennine volcanic district of Southern Tuscany. A new target for geothermal exploration and exploitation in Italy is represented by the Southern Tyrrhenian submarine volcanic district, a geologically young basin (Upper Pliocene-Pleistocene) characterised by tectonic extension where many seamounts have developed. Heat-flow data from that area show significant anomalies comparable to those of onshore geothermal fields. Fractured basaltic rocks facilitate seawater infiltration and circulation of hot water chemically altered by rock/water interactions, as shown by the widespread presence of hydrothermal deposits. The persistence of active hydrothermal activity is consistently shown by many different sources of evidence, including: heat-flow data, gravity and magnetic anomalies, widespread presence of hydrothermal-derived gases (CO2, CO, CH4), 3He/4He isotopic ratios, as well as broadband OBS/H seismological information, which demonstrates persistence of volcano-tectonic events and High Frequency Tremor (HFT). The Marsili and Tyrrhenian seamounts are thus an important—and likely long-lasting-renewable energy resource. This raises the possibility of future development of the world’s first offshore geothermal power plant.
    Description: Published
    Description: 4068-4086
    Description: 3A. Ambiente Marino
    Description: JCR Journal
    Description: open
    Keywords: Marsili seamount ; hydrothermal circulation ; geothermal resource ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We study land subsidence processes and the associated ground fissuring, affecting an active graben filled by thick unconsolidated deposits by means of InSAR techniques and fieldwork. On 21 September 2012, Ciudad Guzmán (Jalisco, Mexico) was struck by ground fissures of about 1.5 km of length, causing the deformation of the roads and the propagation of fissures in adjacent buildings. The field survey showed that fissures alignment is coincident with the escarpments produced on 19 September 1985, when a strong earthquake with magnitude 8.1 struck central Mexico. In order to detect and map the spatio-temporal features of the processes that led to the 2012 ground fissures, we applied InSAR multitemporal techniques to process ENVISAT-ASAR and RADARSAT-2 satellite SAR images acquired between 2003 and 2012. We detect up to 20 mm/year of subsidence of the northwestern part of Ciudad Guzmán. These incremental movements are consistent with the ground fissures observed in 2012. Based on interferometric results, field data and 2D numerical model, we suggest that ground deformations and fissuring are due to the presence of areal subsidence correlated with variable sediment thickness and differential compaction, partly driven by the exploitation of the aquifers and controlled by the distribution and position of buried faults.
    Description: Published
    Description: 8610-8630
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: open
    Keywords: InSAR ; ground subsidence ; buried faults ; ground fissuring ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...