ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes
  • 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
  • Elsevier Science Limited  (7)
  • Molecular Diversity Preservation International  (3)
  • Agu  (2)
  • American Institute of Physics
Collection
Keywords
Years
  • 1
    Publication Date: 2024-07-09
    Description: The coasts of Italy still preserve several remnants of coastal quarries built in antiquity, that now provide insights into the intervening sea-level changes occurred during the last millennia. In this paper, we show and discuss a new class of sea level indicator consisting of millstones carved along the rocky coast of southern Italy since 2500 BP, that are currently submerged. They were extracted from beachrocks, sandstones or similar sedimentary rocks, easier for carving by ancient carving tools. Our study focuses on 10 coastal sites located at Capo d’Orlando, Avola, and Letojanni, in Sicily; Soverato, Tropea, and Capo dell’Armi, in Calabria; Castellabate, Palinuro, and Scario, in Campania; and Polignano San Vito, in Apulia. Unfortunately, only limited archaeological information is available for these anthropic structures. Scario, one of these millstone quarries discussed here, has been dated through independent archaeological remains, allowing us to restrict the exploitation age to the end of XVII century. Present day elevations of these coastal sites were obtained through geo-archaeological surveys calibrated using the nearest tidal stations, together with geomorphological and tectonic interpretations. Data were compared against the latest sea level predictions based on glacio-hydro-isostatic models. Our results allow proposal of the age-range of these millstone quarries and to estimate the intervening relative sea level changes since the time when they were carved.
    Description: Published
    Description: 126-142
    Description: 3A. Ambiente Marino
    Description: JCR Journal
    Description: restricted
    Keywords: Mediterranean sea, Archaeology, sea level ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-30
    Description: In the present work, the Differential SAR Interferometry (DInSAR) technique has been applied to study the surface movements affecting the sedimentary basin of Cassino municipality. Two datasets of SAR images, provided by ERS 1-2 and Envisat missions, have been acquired from 1992 to 2010. Such datasets have been processed independently each other and with different techniques nevertheless providing compatible results. DInSAR data show a subsidence rate mostly located in the northeast side of the city, with a subsidence rate decreasing from about 5–6 mm/yr in the period 1992–2000 to about 1–2 mm/yr between 2004 and 2010, highlighting a progressive reduction of the phenomenon. Based on interferometric results and geological/geotechnical observations, the explanation of the detected movements allows to confirm the anthropogenic (surface effect due to building construction) and geological causes (thickness and characteristics of the compressible stratum)
    Description: Published
    Description: 9676-9690
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: open
    Keywords: Differential SAR Interferometry; SBAS; IPTA; Cassino plain; subsidence ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-07
    Description: Recognizing the seismogenic source of major historical earthquakes, particularly when these have occurred offshore, is a long-standing issue across the Mediterranean Sea and elsewhere. The destructive earthquake (M ~7) that struck western Calabria (southern Italy) on the night of 8 September 1905 is one such case. having various authors proposed a seismogenic source, with apparently diverse hypotheses and without achieving a unique solution. To gain novel insight into the crustal volume where the 1905 earthquake took place and to seek a more robust solution for the seismogenic source associated with this destructive event, we carried out a well-targeted multidisciplinary survey within the Gulf of S. Eufemia (SE Tyrrhenian Sea), collecting geophysical data, oceanographic measurements, and biological, chemical and sedimentary samples. We identified three main tectonic features affecting the sedimentary basin in the Gulf of S. Eufemia: 1) a NE-SW striking, ca. 13-km-long, normal fault, here named S. Eufemia Fault; 2) a WNW-striking polyphased fault system; and 3) a likely E-W trending lineament. Among these, the normal fault shows evidence of activity witnessed by the deformed recent sediments and by its seabed rupture along which, locally, fluid leakage occurs. Features in agreement with the anomalous distribution of prokaryotic abundance and biopolymeric C content, resulted from the shallow sediments analyses. The numerous seismogenic sources proposed in the literature during the past 15 years make up a composite framework of this sector of western Calabria, that we tested against a) the geological evidence from the newly acquired dataset, and b) the regional seismotectonic models. Such assessment allows us to propose the NE-SW striking normal fault as the most probable candidate for the seismogenic source of the 1905 earthquake. Re-appraising a major historical earthquake as the 1905 one enhances the seismotectonic picture of western Calabria. Further understanding of the region and better constraining the location of the seismogenic source may be attained through integrated interpretation of our data together with a) on-land field evidence, and b) seismological modeling.
    Description: Published
    Description: 62-75
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: seismogenic source ; earthquake ; seismotectonics ; prokaryotes ; Calabrian Arc ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-24
    Description: This paper provides new relative sea level data inferred from coastal archaeological sites located along the Turkish coasts of the Gulf of Fethye (8 sites), and Israel, between Akziv and Caesarea (5 sites). The structures selected are those that, for effective functioning, can be accurately related to sea level at the time of their construction. Thus their positions with respect to present sea level provide a measure of the relative sea level change since their time of construction. Useful information was obtained from the investigated sites spanning an age range of ˜2.3–˜1.6 ka BP. The inferred changes in relative sea level for the two areas are distinctly different, from a rise of 2.41 to 4.50 m in Turkey and from 0 to 0.18 m in Israel. Sea level change is the combination of several processes, including vertical tectonics, glacio–hydro-isostatic signals associated with the last glacial cycle, and changes in ocean volume. For the Israel section, the present elevations of the MIS-5.5 Tyrrhenian terraces occur at a few meters above present sea level and vertical tectonic displacements are small. Data from GPS and tide gauge measurements also indicate that any recent vertical movements are small. The MIS-5.5 shorelines are absent from the investigated section of the Turkish coast, consistent with crustal subsidence associated with the Hellenic Arc. The isostatic signals for the Israel section of the coast are also small (ranging from −0.11 mm/yr to 0.14 mm/yr, depending on site and earth model) and the observed (eustatic) average sea level change, corrected for this contribution, is a rise of 13.5 ± 2.6 cm during the past ˜2 ka. This is attributed to the time-integrated contribution to sea level from a combination of thermal expansion and other increases in ocean volume. The observed sea levels from the Turkish sites, in contrast, indicate a much greater rise of up to 2.2 mm/yr since 2.3 ka BP occurring in a wide area between Knidos and Kekova. The isostatic signal here is also one of a rising sea level (of up to ˜1 mm/yr and site and earth-model dependent) and the corrected tectonic rate of land subsidence is ˜1.48 mm/yr. This is the primary cause of dramatic relative sea level rise for this part of the coast.
    Description: Published
    Description: 13-20
    Description: JCR Journal
    Description: restricted
    Keywords: Sea level change ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Agu
    In:  Froger, J.-L., O. Merle, and P. Briole (2001), Active spreading and regional extension at Mount Etna imaged by SAR interferometry, Earth Planet. Sci. Lett., 187, 245–258. Gvirtzman, Z., and A. Nur (1999), The formation of Mount Etna as the consequence of slab rollback, Nature, 401, 782–785. Leslie, S. C., G. F. Moore, J. K. Morgan, and D. J. Hills (2002), Seismic stratigraphy of the frontal Hawaiian moat: Implications for sedimentary processes at the leading edge of an oceanic hotspot trace, Mar. Geol., 184, 143–162. Lundgren, P., F. Casu, M. Manzo, A. Pepe, P. Berardino, E. Sansosti, and R. Lanari (2004), Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry, Geophys. Res. Lett., 31, L04602, doi:10.1029/2003GL018736. Maramai, A., L. Graziani, G. Alessio, P. Burrato, L. Colini, L. Cucci, R. Nappi, A. Nardi, and G.Vilardo (2005), Near- and far-field survey report of the 30 December 2002 Stromboli (Southern Italy) tsunami, Mar. Geol., 215, 93– 106. Moore, J. G., D. A. Clague, R. T. Holcomb, P. W. Lipman, W. R. Normak, and M. E. Torresan (1989), Prodigious submarine landslides on the Hawaiian ridge, J. Geophys. Res., 94, 17,465–17,484. Morgan, J. K., F. M. Moore, J. Hills, and S. Leslie (2000), Overthrusting and sediment accretion along Kilauea’s mobile south flank, Hawaii: Evidence for volcanic spreading from marine seismic reflection data, Geology, 28, 667–670. Monaco, C., P. Tapponier, L. Tortorici, and P. Y. Gillot (1997), Late quaternary slip-rates on the Acireale-Piedimonte normal fault and tectonic origin of Mt. Etna (Sicily), Earth Planet. Sci. Lett., 147, 125– 139. Nicolich, R., M. Laigle, A. Hirn, L. Cernobori, and J. Gallart (2000), Crustal structure of the Ionian margin of Sicily: Etna volcano in the frame of regional evolution, Tectonophysics, 329, 121– 139. Romano, R., and C. Sturiale (1982), The historical eruptions of Mt. Etna (volcanological data), in Mt. Etna Volcano, edited by R. Romano, Mem. Soc. Geol. It., 23, 75–97. von Huene, R., C. R. Ranero, and P. Watts (2004), Tsunamigenic slope failure along Middle America Trench in two tectonic settings, Mar. Geol., 203, 303– 317. Yilmaz, O. (1987), Seismic data processing, Invest. Geophys., vol. 2, Soc. of Explor. Geophys., 562 pp., Tulsa, Okla.
    Publication Date: 2017-04-04
    Description: High resolution seismic data, we collected in the Ionian sea, reveal large submarine landslide deposits offshore from Mt. Etna (Italy), spatially consistent with the eastern flank collapse of this volcano. A large debris-avalanche deposit, we relate to the Valle del Bove scar, displays long offshore run-outs (till 20 km) and a volume of a few tens of cubic kilometres (16–21 km3). Other landslide deposits are also imaged, in particular a striking unique record of the relative timing of multiple submarine large slump events.
    Description: Published
    Description: L13302
    Description: JCR Journal
    Description: reserved
    Keywords: submarine landslides ; Mt. Etna ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Finding the geometry of aquifers in an active volcano is important for evaluating the hazards associated with phreatomagmatic phenomena and incidentally to address the problem of water supply. A combination of electrical resistivity tomography (ERT), self-potential, CO2, and temperature measurements provides insights about the location and pattern of ground water flow at Stromboli volcano. The measurements were conducted along a NE-SW profile across the island from Scari to Ginostra, crossing the summit (Pizzo) area. ERT data (electrode spacing 20 m, depth of penetration of 200 m) shows the shallow architecture through the distribution of the resistivities. The hydrothermal system is characterized by low values of the resistivity (〈50 W m) while the surrounding rocks are resistive (〉2000 W m) except on the North-East flank of the volcano where a cold aquifer is detected at a depth of 80 m (resistivity in the range 70–300 W m). CO2 and temperature measurements corroborate the delineation of the hydrothermal body in the summit part of the volcano while a negative self-potential anomaly underlines the position of the cold aquifer.
    Description: Published
    Description: L17304
    Description: JCR Journal
    Description: reserved
    Keywords: hydrogeology ; Stromboli volcano ; CO2 ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We document quantitatively observations of quasi-Love waves obtained at permanent (Italian National Seismic Network) and temporary seismic stations deployed in Italy between 2003 and 2006 (Retreat, CAT/SCAN projects). We analyzed large earthquakes with source parameters that favor quasi-Love wave generation within this time-span, including the Sumatra–Andaman earthquake of 12/26/04. The presence or the absence of the quasi-Love phase is compared to the smoothed anisotropic pattern defined by the numerous SKS splitting measurements obtained in peninsular Italy, and to the Italian upper mantle structure as defined by seismic tomography. The large-scale anisotropic features, responsible for shear-wave splitting and documented also by Pn and surface-wave anisotropy, generally display the correct geometry to explain the scattered quasi-Love waves. Quasi-Love observations do not demand a tilted-axis anisotropic geometry. We argue instead for anisotropy with laterally-variable horizontal symmetry axis in the upper mantle below the Italian peninsula.
    Description: Published
    Description: 26-38
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic anisotropy ; Quasi-Love ; Italy ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: An automatic analysis code called ANISOMAT+ has been developed and improved to automatically retrieve the crustal anisotropic parameters fast polarization direction (ϕ) and delay time (δt) related to the shear wave splitting phenomena affecting seismic S-wave. The code is composed of a set of MatLab scripts and functions able to evaluate the anisotropic parameters from the three-component seismic recordings of local earthquakes using the cross-correlation method. Because the aim of the code is to achieve a fully automatic evaluation of anisotropic parameters, during the development of the code we focus our attention to devise several automatic checks intended to guarantee the quality and the stability of the results obtained. The basic idea behind the development of this automatic code is to build a tool able to work on a huge amount of data in a short time, obtaining stable results and minimizing the errors due to the subjectivity. These behaviors, coupled to a three component digital seismic network and a monitoring system that performs automatic pickings and locations, are required to develop a real-time monitoring of the anisotropic parameters.
    Description: Published
    Description: 62-68
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 6T. Sismicità indotta e caratterizzazione sismica dei sistemi naturali
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: shear wave splitting, Earthquake forecast, Anisotropy, Cross-correlation method ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: To obtain accurate and reliable estimations of the major lithological properties of the rock within a studied volume, geophysics uses the joint information provided by different geophysical datasets (e.g. gravimetric, magnetic, seismic). Representation of the different types of information entering the problem using probability density functions can provide the mathematical framework to formulate their combination. The maximum likelihood estimator of the resulting joint posterior probability density functions leads to the solution of the problem. However, one key problem appears to limit the use of this solver to an extensive range of real applications: information coming from potential fields that implies the presence of dense matrices in the resolving estimator. It is well known that dense matrix systems rapidly challenge both the algorithms and the computing platforms, and are not suited to high-resolution 3D geophysical analysis. In this study, we propose a procedure that allows us to obtain fast and reliable solutions of the joint posterior probability density functions in the presence of large gravity datasets and using sophisticated model parametrization. As it is particularly CPUconsuming, this 3D problem makes use of parallel computing to improve the performance and the accuracy of the simulations. Analysis of the correctness of the results, and the performance on different parallel environments, shows the portability and the efficiency of the code. This code is applied to a real experiment, where we succeed in recovering a 3D shear-wave velocity and density distribution within the upper mantle of the European continent, satisfying both the seismological and gravity data. On a multiprocessor machine, we have been able to handle forward and inverse calculations with a dense matrix of 215.66 Gb in 18 min, 20 s and 20 min, 54 s, respectively.
    Description: NERIES INFRAST-2.1-026130, MERG-CT-2007-046522
    Description: Published
    Description: 143-156
    Description: 2.1. TTC - Laboratorio per le reti informatiche, GRID e calcolo avanzato
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Parallel ; Dense matrix ; Block-cyclic distribution ; Inverse problem ; Probability density function ; ScaLAPACK ; Gravity field ; Shear-wave velocity structure ; Density structure ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Italy has a strong geothermal potential for power generation, although, at present, the only two geothermal fields being exploited are Larderello-Travale/Radicondoli and Mt. Amiata in the Tyrrhenian pre-Apennine volcanic district of Southern Tuscany. A new target for geothermal exploration and exploitation in Italy is represented by the Southern Tyrrhenian submarine volcanic district, a geologically young basin (Upper Pliocene-Pleistocene) characterised by tectonic extension where many seamounts have developed. Heat-flow data from that area show significant anomalies comparable to those of onshore geothermal fields. Fractured basaltic rocks facilitate seawater infiltration and circulation of hot water chemically altered by rock/water interactions, as shown by the widespread presence of hydrothermal deposits. The persistence of active hydrothermal activity is consistently shown by many different sources of evidence, including: heat-flow data, gravity and magnetic anomalies, widespread presence of hydrothermal-derived gases (CO2, CO, CH4), 3He/4He isotopic ratios, as well as broadband OBS/H seismological information, which demonstrates persistence of volcano-tectonic events and High Frequency Tremor (HFT). The Marsili and Tyrrhenian seamounts are thus an important—and likely long-lasting-renewable energy resource. This raises the possibility of future development of the world’s first offshore geothermal power plant.
    Description: Published
    Description: 4068-4086
    Description: 3A. Ambiente Marino
    Description: JCR Journal
    Description: open
    Keywords: Marsili seamount ; hydrothermal circulation ; geothermal resource ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: Competing geodynamic scenarios proposed for northern Apennines (Italy) make very different predictions for the orientation of strain in the upper mantle. Constraints on the pattern are offered by observations of seismic anisotropy. Previous study of the anisotropy beneath the northern Apennines used birefringence of core-refracted shear waves (SKS phases), and demonstrated the presence of two domains: Tuscan and Adria. In the transition between the two domains, across the Apennines orogen, anisotropy measurements reflect a complex deep structure. To define better the upper-mantle structure beneath this area we analyze seismological data recorded by a set of seismic stations that operated for 3 years, between 2003 and 2006, located in the outer part of the Apennines belt, in the Adria terrane, collected by the RETREAT Project. Directionally distributed sets of SKS records were inverted for layered anisotropic structures with a well-tested method, adding new results to previous hypotheses for this area. New data analysis argues for two-layer anisotropy for sites located on the Apennines wedge and also one site in the Tuscan terrane. Beneath the wedge an upper layer with nearly north-south fast polarization pervades the lithospheric mantle, while at depth a nearly NW–SE Apennines-parallel direction is present in the lower layer. Beneath Tuscany a shallower NW–SE direction and a deeper E–W one suggest the deeper strain from active slab retreat, with a mantle-wedge circulation (i.e. an east–west corner flow), overlain by an Apennines-parallel fast polarization that could be a remnant of lower-crust deformation.
    Description: Published
    Description: 39-51
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Subduction zones ; Seismic anisotropy ; Northern Apennines ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: We study land subsidence processes and the associated ground fissuring, affecting an active graben filled by thick unconsolidated deposits by means of InSAR techniques and fieldwork. On 21 September 2012, Ciudad Guzmán (Jalisco, Mexico) was struck by ground fissures of about 1.5 km of length, causing the deformation of the roads and the propagation of fissures in adjacent buildings. The field survey showed that fissures alignment is coincident with the escarpments produced on 19 September 1985, when a strong earthquake with magnitude 8.1 struck central Mexico. In order to detect and map the spatio-temporal features of the processes that led to the 2012 ground fissures, we applied InSAR multitemporal techniques to process ENVISAT-ASAR and RADARSAT-2 satellite SAR images acquired between 2003 and 2012. We detect up to 20 mm/year of subsidence of the northwestern part of Ciudad Guzmán. These incremental movements are consistent with the ground fissures observed in 2012. Based on interferometric results, field data and 2D numerical model, we suggest that ground deformations and fissuring are due to the presence of areal subsidence correlated with variable sediment thickness and differential compaction, partly driven by the exploitation of the aquifers and controlled by the distribution and position of buried faults.
    Description: Published
    Description: 8610-8630
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: open
    Keywords: InSAR ; ground subsidence ; buried faults ; ground fissuring ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...