ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acoustics
  • Antartica
  • American Association for the Advancement of Science (AAAS)  (9)
  • Acoustical Society of America  (2)
  • American Association for the Advancement of Science  (1)
  • Public Library of Science
Collection
Keywords
Publisher
  • 1
    Publication Date: 2017-04-04
    Description: In recent years, an increasing number of surveys have definitively confirmed the seasonal presence of fin whales (Balaenoptera physalus) in highly productive regions of the Mediterranean Sea. Despite this, very little is yet known about the routes that the species seasonally follows within the Mediterranean basin and, particularly, in the Ionian area. The present study assesses for the first time fin whale acoustic presence offshore Eastern Sicily (Ionian Sea), throughout the processing of about 10 months of continuous acoustic monitoring. The recording of fin whale vocalizations was made possible by the cabled deep-sea multidisciplinary observatory, “NEMO-SN1”, deployed 25 km off the Catania harbor at a depth of about 2,100 meters. NEMO-SN1 is an operational node of the European Multidisciplinary Seafloor and water-column Observatory (EMSO) Research Infrastructure. The observatory was equipped with a low-frequency hydrophone (bandwidth: 0.05 Hz–1 kHz, sampling rate: 2 kHz) which continuously acquired data from July 2012 to May 2013. About 7,200 hours of acoustic data were analyzed by means of spectrogram display. Calls with the typical structure and patterns associated to the Mediterranean fin whale population were identified and monitored in the area for the first time. Furthermore, a background noise analysis within the fin whale communication frequency band (17.9–22.5 Hz) was conducted to investigate possible detection-masking effects. The study confirms the hypothesis that fin whales are present in the Ionian Sea throughout all seasons, with peaks in call detection rate during spring and summer months. The analysis also demonstrates that calls were more frequently detected in low background noise conditions. Further analysis will be performed to understand whether observed levels of noise limit the acoustic detection of the fin whales vocalizations, or whether the animals vocalize less in the presence of high background noise.
    Description: Published
    Description: e0141838
    Description: 3A. Ambiente Marino
    Description: JCR Journal
    Description: open
    Keywords: Whales ; Bioacoustics ; Background noise (acoustics) ; Acoustic signals ; Sperm whales ; Vocalization ; Acoustics ; Data acquisition ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1994. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 96 (1994): 1033-1046, doi:10.1121/1.410380.
    Description: Using deterministic ray-acoustic modeling of 1000-km propagation in the North Pacific, a depth-dependent parameter of ocean sound channels has been found to strongly influence geometrical ray propagation. This parameter is the sound speed times the second vertical derivative of sound speed divided by the square of the first derivative. Ray and wavefront timing and intensity can be influenced within realistic ocean sound channels by unpredictable wavefront triplications and caustics. These triplications are associated with large values of the parameter at ray turning points. The parameter, a relative curvature, behaves as a random variable because of ocean finestructure, causing the unpredictability. The relative curvature has a higher mean value near the sound-speed minimum for both an internal-wave model and actual data, so that this mechanism is a plausible explanation of poor multipath resolution and identifiability late in North Pacific pulse trains.
    Description: This work was supported by the Office of Naval Technology (N00014-90-C-0098) and the Office of Naval Research, Ocean Acoustics Program (N00014-92-J-1162).
    Keywords: Pacific Ocean ; Ray-tracing ; Sound waves ; Wave propagation ; Pulses ; Acoustics ; Sound velocity ; Depth profiles ; Wave front ; Fluctuations ; Underwater
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 1990. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 87 (1990): 1527-1534, doi:10.1121/1.399452.
    Description: An explicit second-order finite-difference scheme has been used to solve the elastic-wave equation in the time domain. Solutions are presented for the perfect wedge, the lossless penetrable wedge, and the plane parallel waveguide that have been proposed as benchmarks by the Acoustical Society of America. Good agreement with reference solutions is obtained if the media is discretized at 20 gridpoints per wavelength. There is a major discrepancy (up to 20 dB) in reference-source level because the reference solutions are normalized to the source strength at 1 m in the model, but the finite-difference solutions are normalized to the source strength at 1 m in a homogeneous medium. The finite-difference method requires computational times between 10 and 20 h on a super minicomputer without an array processor. The method has the advantage of providing phase information and, when run for a pulse source, of providing insight into the evolution of the wave field and energy partitioning. More complex models, including velocity gradients and strong lateral heterogeneities, can be solved with no additional computational effort. The method has also been formulated to include shear wave effects.
    Description: This work was supported by the Office of Naval Research under Contract No. N00014-87-K-0007.
    Keywords: Finite difference method ; Range ; Benchmarks ; Wave equations ; Sound levels ; Shear waves ; Acoustics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 3 (2017): e1601426, doi:10.1126/sciadv.1601426.
    Description: Southern Ocean abyssal waters, in contact with the atmosphere at their formation sites around Antarctica, not only bring signals of a changing climate with them as they move around the globe but also contribute to that change through heat uptake and sea level rise. A repeat hydrographic line in the Indian sector of the Southern Ocean, occupied three times in the last two decades (1994, 2007, and, most recently, 2016), reveals that Antarctic Bottom Water (AABW) continues to become fresher (0.004 ± 0.001 kg/g decade−1), warmer (0.06° ± 0.01°C decade−1), and less dense (0.011 ± 0.002 kg/m3 decade−1). The most recent observations in the Australian-Antarctic Basin show a particularly striking acceleration in AABW freshening between 2007 and 2016 (0.008 ± 0.001 kg/g decade−1) compared to the 0.002 ± 0.001 kg/g decade−1 seen between 1994 and 2007. Freshening is, in part, responsible for an overall shift of the mean temperature-salinity curve toward lower densities. The marked freshening may be linked to an abrupt iceberg-glacier collision and calving event that occurred in 2010 on the George V/Adélie Land Coast, the main source region of bottom waters for the Australian-Antarctic Basin. Because AABW is a key component of the global overturning circulation, the persistent decrease in bottom water density and the associated increase in steric height that result from continued warming and freshening have important consequences beyond the Southern Indian Ocean.
    Description: The 2016 I08S cruise and the analysis and science performed at sea, as well as the individual principal investigators were funded through multiple National Oceanic and Atmospheric Administration (NOAA) and NSF grants including NSF grant OCE-1437015. The research for this article was mainly completed at sea. For land-based work, V.V.M. relied on her postdoctoral funding through NSF grant OCE-1435665, and A.M.M. was supported in part by NSF grant OCE-1356630 and NOAA grant NA11OAR4310063.
    Keywords: Salinity ; AABW ; Changes ; Water masses ; T-S properties ; Iceberg ; Calving ; Antartica ; Abyss ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-07-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zimmer, C -- New York, N.Y. -- Science. 2001 Jul 6;293(5527):29-31.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11441158" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustics ; Animals ; Cues ; Fishes/physiology ; Seals, Earless/*physiology ; Swimming ; Vibrissae/*physiology ; *Water Movements
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-07-07
    Description: Marine mammals often forage in dark or turbid waters. Whereas dolphins use echolocation under such conditions, pinnipeds apparently lack this sensory ability. For seals hunting in the dark, one source of sensory information may consist of fish-generated water movements, which seals can detect with their highly sensitive whiskers. Water movements in the wake of fishes persist for several minutes. Here we show that blindfolded seals can use their whiskers to detect and accurately follow hydrodynamic trails generated by a miniature submarine. This shows that hydrodynamic information can be used for long-distance prey location.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dehnhardt, G -- Mauck, B -- Hanke, W -- Bleckmann, H -- New York, N.Y. -- Science. 2001 Jul 6;293(5527):102-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Zoologie, Universitat Bonn, Poppelsdorfer Schloss, D-53115 Bonn, Germany. dehnhardt@neurobiologie.ruhr-uni-bochum.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11441183" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustics ; Animals ; Cues ; Fishes/physiology ; Probability ; Seals, Earless/*physiology ; Swimming ; Time Factors ; Vibrissae/*physiology ; Video Recording ; *Water Movements
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1989-10-27
    Description: According to the place principles of the classical hearing theory, the physical entity frequency is encoded in the auditory periphery as place information (tonotopic representation), which is decoded in more central parts of the auditory system to form the subjective entity pitch. However, this relation is true only for pure-tone signals (spectral pitch); it can be quite different in the case of complex auditory stimuli (virtual pitch), thus requiring a multistage process for pitch formation. Neuromagnetic measurements showed that the tonotopic organization of the primary auditory cortex reflects the pitch rather than the frequency of the stimulus; that is, the pitch formation process must take place in subcortical regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pantev, C -- Hoke, M -- Lutkenhoner, B -- Lehnertz, K -- New York, N.Y. -- Science. 1989 Oct 27;246(4929):486-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Experimental Audiology, University of Munster, Federal Republic of Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2814476" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustic Stimulation ; Acoustics ; Audiometry/methods ; Auditory Cortex/*physiology ; Brain Mapping ; Humans ; Magnetics ; Pitch Perception/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-02-04
    Description: Until now, continental shelf environments have been monitored with highly localized line-transect methods from slow-moving research vessels. These methods significantly undersample fish populations in time and space, leaving an incomplete and ambiguous record of abundance and behavior. We show that fish populations in continental shelf environments can be instantaneously imaged over thousands of square kilometers and continuously monitored by a remote sensing technique in which the ocean acts as an acoustic waveguide. The technique has revealed the instantaneous horizontal structural characteristics and volatile short-term behavior of very large fish shoals, containing tens of millions of fish and stretching for many kilometers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Makris, Nicholas C -- Ratilal, Purnima -- Symonds, Deanelle T -- Jagannathan, Srinivasan -- Lee, Sunwoong -- Nero, Redwood W -- New York, N.Y. -- Science. 2006 Feb 3;311(5761):660-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Ocean Science and Engineering, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. makris@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16456080" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustics ; Animals ; Atlantic Ocean ; Behavior, Animal ; Ecosystem ; *Fishes ; Oceanography ; Population Density ; Population Dynamics ; *Seawater ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-02-09
    Description: Acousticians have long debated whether and how the resonances of the vocal tract are involved in the playing of clarinet and saxophone. We measured the resonances of saxophonists' vocal tracts directly while they played. Over most of the instrument's range, there is no simple relation between tract resonances and the note played, and the tract resonances varied among players. In the high (altissimo) range, a strong resonance of the tracts of professional saxophonists was systematically tuned slightly above the desired note. Amateurs, who did not tune a strong resonance, were unable to play notes in the altissimo range.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Jer Ming -- Smith, John -- Wolfe, Joe -- New York, N.Y. -- Science. 2008 Feb 8;319(5864):776. doi: 10.1126/science.1151411.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Physics, University of New South Wales, Sydney, NSW 2052, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18258908" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustics ; Humans ; Larynx/*physiology ; *Learning ; *Music ; Pitch Perception ; Sound
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-02-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Servick, Kelly -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):834-7. doi: 10.1126/science.343.6173.834.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24558142" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustics ; Animals ; Computer Systems ; Ecological Parameter Monitoring/*methods ; *Ecosystem ; Software ; *Sound ; *Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-08-15
    Description: Human vocal development occurs through two parallel interactive processes that transform infant cries into more mature vocalizations, such as cooing sounds and babbling. First, natural categories of sounds change as the vocal apparatus matures. Second, parental vocal feedback sensitizes infants to certain features of those sounds, and the sounds are modified accordingly. Paradoxically, our closest living ancestors, nonhuman primates, are thought to undergo few or no production-related acoustic changes during development, and any such changes are thought to be impervious to social feedback. Using early and dense sampling, quantitative tracking of acoustic changes, and biomechanical modeling, we showed that vocalizations in infant marmoset monkeys undergo dramatic changes that cannot be solely attributed to simple consequences of growth. Using parental interaction experiments, we found that contingent parental feedback influences the rate of vocal development. These findings overturn decades-old ideas about primate vocalizations and show that marmoset monkeys are a compelling model system for early vocal development in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takahashi, D Y -- Fenley, A R -- Teramoto, Y -- Narayanan, D Z -- Borjon, J I -- Holmes, P -- Ghazanfar, A A -- New York, N.Y. -- Science. 2015 Aug 14;349(6249):734-8. doi: 10.1126/science.aab1058.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA. Department of Psychology, Princeton University, Princeton, NJ 08544, USA. ; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA. ; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA. Department of Mechanical and Aerospace Engineering and Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA. ; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA. Department of Psychology, Princeton University, Princeton, NJ 08544, USA. Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26273055" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustics ; Animals ; Biomechanical Phenomena ; Callithrix/*growth & development/physiology/psychology ; Female ; Male ; Models, Biological ; Muscle Tonus ; Vocal Cords/growth & development/physiology ; *Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1982-10-08
    Description: Sounds recorded in Dallas at the time of the assassination of John F. Kennedy were analyzed by two research groups, whose reports formed the basis for the opinion that two gunmen fired at President Kennedy. These reports and the acoustic evidence have been studied by the Committee on Ballistic Acoustics, and further acoustic analyses, including sound spectrograms, have been performed. The committee finds that the acoustic data do not support a conclusion that a second gunman was involved in the assassination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 1982 Oct 8;218(4568):127-33.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6750789" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustics ; *Famous Persons ; *Forensic Medicine ; History, 20th Century ; Humans ; Male ; Texas ; *Wounds, Gunshot
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-08-17
    Description: The mustache bat emits a three-harmonic echolocation pulse. At the external ear, large interaural intensity differences are generated only when a sound originates within a limited area of two-dimensional space, and this area is different for each pulse harmonic. As a consequence, the external ear generates pronounced binaural spectral cues containing two-dimensional spatial information. This information is encoded in the inferior colliculus by neurons tuned to one of the harmonics and sensitive to interaural intensity differences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fuzessery, Z M -- Pollak, G D -- NS 13276/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1984 Aug 17;225(4663):725-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6463649" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustics ; Animals ; Auditory Perception/*physiology ; Chiroptera/*physiology ; Ear, External/physiology ; Echolocation/*physiology ; Inferior Colliculi/physiology ; Neurons/physiology ; Orientation/*physiology ; Sound Localization/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...