ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
  • AGU  (6)
  • Nature Publishing Group
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: In this paper, we describe the 1809 eruption of Mt. Etna, Italy, which represents one historical rare case in which it is possible to observe details of the internal structure of the feeder system. This is possible thanks to the presence of two large pit craters located in the middle of the eruptive fracture field that allow studying a section of the shallow feeder system. Along the walls of one of these craters, we analysed well-exposed cross sections of the uppermost 15–20 m of the feeder system and related volcanic products. Here, we describe the structure, morphology and lithology of this portion of the 1809 feeder system, including the host rock which conditioned the propagation of the dyke, and compare the results with other recent eruptions. Finally, we propose the dynamic model of the magma behaviour inside a laterally-propagating feeder dyke, demonstrating how this dynamic triggered important changes in the eruptive style (from effusive/Strombolian to phreatomagmatic) during the same eruption. Our results are also useful for hazard assessment related to the development of flank eruptions, potentially the most hazardous type of eruption from basaltic volcanoes in densely urbanized areas, such as Mt. Etna.
    Description: Published
    Description: 1-11
    Description: 2T. Tettonica attiva
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: N/A or not JCR
    Description: open
    Keywords: feeder dyke ; basaltic volcanoes ; flank eruptions ; Etna ; volcanic hazards ; sill ; volcanic rift ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: This study concerns the unstable scarp named Sciara del Fuoco (SDF) at Stromboli volcano, merging geostructural observations, live-cam records in the visible and IR bands, analysis of vertical aerial photographs, and seismic records. These are used to assess morpho-structural changes between 2002 and 2004. The onset of the lava effusion on 28 December, 2002 preceded a gravitational collapse by two days, affecting a wide area of the SDF above and below sea level. We surmise that the collapse enhanced latent instability of the scarp. The 2002–2003 lava flows had a remarkable stabilizing effect on wide portions (〉50%) of the SDF, whilst erosive phenomena continued in the zone not covered by lava. This caused unrelenting regression of the upper landslide scarp toward the summit craters in the form of rockfalls and debris flows. If the crater conduit were involved in the sliding, then a change in eruptive behavior cannot be excluded.
    Description: Published
    Description: L09304
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3767834 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Dikes provide crucial information on how magma propagates within volcanoes. Somma-Vesuvio (Italy) consists of the active Vesuvio cone, partly bordered by the older Mt. Somma edifice. Historical chronicles on the fissure eruptions in 1694–1944 are matched with an analytical solution to define the propagation path of the related dikes and to study any control of the Mt. Somma relief. The fissures always consisted of the downslope migration of vents from an open summit conduit, indicating lateral propagation as the predominant mechanism for shallow dike emplacement. No fissure emplaced beyond Mt. Somma, suggesting that its buttressing hinders the propagation of the radial dikes. An analytical solution is defined to describe the mechanism of formation of the laterally propagating dikes and to evaluate the effect of topography. The application to Somma-Vesuvio suggests that, under ordinary excess magmatic pressures, the dikes should not propagate laterally at depths 〉240–480 m below the surface, as the increased lithostatic pressure requires magmatic pressures higher than average. This implies that, when the conduit is open, the lateral emplacement of dikes is expectable on the S, Wand E slopes. The lack of fissures N of Mt. Somma is explained by its buttressing, which hinders dike propagation. Citation: Acocella, V., M. Porreca, M. Neri, E. Massimi, and M. Mattei (2006), Propagation of dikes at Vesuvio (Italy) and the effect of Mt. Somma, Geophys. Res. Lett., 33, L08301, doi:10.1029/2005GL025590.
    Description: Published
    Description: L08301
    Description: reserved
    Keywords: NONE ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 5097648 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Understanding how shallow magma is emplaced within volcanoes is crucial for hazard assessment. The 2002–2003 Stromboli eruption provides the opportunity to investigate shallow magma emplacement resulting from orthogonal feeder dikes and its possible effects. Stromboli erupted in 2002–2003, when effusive activity replaced Strombolian activity. On December 28, a NE-SW fissure propagated from the lava-filled northernmost summit crater. On December 29, a NW-SE fissure propagated north of the craters, feeding NW-SE aligned vents. On December 30, this area collapsed, reaching the sea and generating a tsunami. In mid February 2003, the NW-SE fissure became inactive, while the NE-SW effusive fissure continued until July. A model for shallow magma emplacement is proposed. The lateral propagation of a NE-SW dike from the northernmost crater was triggered. Below, a NW-SE dike, propagating from the magma-filled NE tip of the NE-SW elongated conduit, fed the NW-SE aligned vents. In February, the conduit periphery became solidified, freezing the NW-SE dike, and the transport of magma was limited to the central part, focusing its rise below the craters. This fed the NE-SW fissure until the supply decreased further (July), returning to the ordinary level sustaining Strombolian activity. Orthogonal dike emplacement followed the trajectories of the maximum (gravitational) stress s1, partly controlled by the irregular topography of the uppermost edifice. The emplacement of orthogonal dikes in a limited area is feasible at non-perfectly conical active volcanoes, where the maximum gravitational stress may show variations from a purely radial path.
    Description: Published
    Description: L17310
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3375462 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-03
    Description: A lava emission started at Mt. Etna, Italy, on 7 September, 2004. Neither earthquake seismicity heralded or accompanied the opening of the fracture field from which the lava poured out, nor volcanic tremor changed in amplitude and frequency content at the onset of the effusive activity. To highlight long-term changes, we propose a method for the location of the tremor source based on a 3D grid search, using the amplitude decay of the seismic signal, from January to November 2004. We find the centroid of the tremor source within a zone close to and partially overlapped with the summit craters (pre-effusive phase), which extended up to 2 km south of them (effusive phase). The depths are of between 1698 and 2387 m a.s.l. We hypothesize the lava effusion stemmed from a degassed magma body, although we find evidence of temporary magma overpressure conditions, such as those documented on 25 September.
    Description: Published
    Description: L09304
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1254005 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Radon emissions are frequently monitored in volcanically and tectonically active areas in order to reveal changes in soil degassing, as radon acts a tracer for the more abundant CO2 degassing commonly observed in such areas. Between July 2002 and May 2003 a series of discrete measurements of radon concentrations in soil were made with high spatial resolution (∼5–100 m) in the Santa Venerina area on Mt. Etna. These measurements revealed well-defined linear anomalies that we interpret as being caused by active faults whose higher porosity than surrounding soils allows an increased CO2 flux, carrying radon from beneath. These faults were not visible at the surface and were therefore revealed at high spatial resolution by our radon survey. Our hypothesis that the positive anomalies are attributable to active faults was strengthened by the observation of concentrated damage along this geometry during the earthquakes that struck this area in late October 2003.
    Description: Published
    Description: 4
    Description: partially_open
    Keywords: Structural Geology: Role of fluids ; Structural Geology: Fractures and faults ; Structural Geology: Instruments and techniques ; Volcanology: Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 713186 bytes
    Format: 490 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Soil radon emissions have been proved as a useful tool for predicting earthquakes and volcanic eruptions and furthermore aided in determining the location of active faults. Continuous radon monitoring was carried out near Southeast Crater of Mt. Etna in September–November 1998, during a period of frequent eruptive episodes at that crater. Radon anomalies were detected when eruptive episodes and the accompanying volcanic tremor became increasingly intense: no anomalies in radon activity were observed during the first five, and weaker, eruptive episodes, whereas significant spikes in radon activity preceded the latter five episodes by ≥46 hours. This probably reflects increased gas leakage through fractures intersecting the shallow plumbing system, as gas pressure in the Southeast Crater conduit became higher with time. Radon monitoring thus might serve to better understand eruptive mechanisms and possible precursors, making further studies in this field a promising perspective.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Seismology: Volcano seismology ; Structural Geology: Role of fluids ; Volcanology: Volcano monitoring ; Volcanology: Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 152534 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...