ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques  (21)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics  (18)
  • 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy
  • AGU  (32)
  • Springer-Verlag  (7)
  • Molecular Diversity Preservation International  (4)
  • Nature Publishing Group
Collection
Years
  • 1
    Publication Date: 2021-05-17
    Description: This is the first report in the scientific literature of direct measurement of the terminal settling velocity of volcanic particles during an eruption. Field measurements using a continuous wave X-band disdrometer were carried out at Mt. Etna on 18 and 19 December 2002, when the explosive activity produced a 4 km high volcanic plume. These data allow the estimation of the intensity of the fallout and the measurement of the terminal settling velocities of the volcanic particles in real-time. The main results are: (1) the tested instrument detected coherent falling volcanic particles from 0.2 to 1 mm diameter; (2) measured terminal settling velocities were in agreement with both experimental and theoretical methods; (3) however, the measured velocities were clustered around few discrete values, rather than a range of velocities as would be expected if the particles were falling simultaneously and discretely. This new methodology has many new applications for local hazard mitigation and improved understanding of fallout processes.
    Description: Published
    Description: 1-5
    Description: partially_open
    Keywords: Volcanology: Explosive volcanism ; Volcanology: Remote sensing of volcanoes ; Volcanology: Instruments and techniques ; Volcanology: Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 163670 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-26
    Description: The Tindari Fault System (southern Tyrrhenian Sea, Italy) is a regional zone of brittle deformation located at the transition between ongoing contractional and extensional crustal compartments and lying above the western edge of a narrow subducting slab. Onshore structural data, an offshore seismic reflection profile, and earthquake data are analyzed to constrain the present geometry of the Tindari Fault System and its tectonic evolution since Neogene, including the present seismicity. Results show that this zone of deformation consists of a broad NNW trending system of faults including sets of right-lateral, left-lateral, and extensional faults as well as early strike-slip faults reworked under late extension. Earthquakes and other neotectonic data provide evidence that the Tindari Fault System is still active in the central and northern sectors and mostly accommodates extensional or rightlateral transtensional displacements on a diffuse array of faults. From these data, a multiphase tectonic history is inferred, including an early phase as a right-lateral strike-slip fault and a late extensional reworking under the influence of the subductionrelated processes, which have led to the formation of the Tyrrhenian back-arc basin. Within the present, regional, geodynamic context, the Tindari Fault System is interpreted as an ongoing accommodation zone between the adjacent contractional and extensional crustal compartments, these tectonic compartments relating to the complex processes of plate convergence occurring in the region. The Tindari Fault System might also be included in an incipient, oblique-extensional, transfer zone linking the ongoing contractional belts in the Calabrian-Ionian and southern Tyrrhenian compartments.
    Description: Published
    Description: TC2006
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3563464 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-27
    Description: The Sciara del Fuoco (SdF) landslides that occurred at the end of December 2002 prompted researchers to install geodetic networks to monitor deformations related to potential new slope failures. With this aim, an integrated multiparametric monitoring system was designed and deployed. In particular, this complex monitoring system is composed of four single systems: an electronic distance measurement network, installed immediately after the landslide events, a realtime GPS network, a ground-based interferometric linear synthetic aperture radar (GB-InSAR), and an automated topographic monitoring system (named Theodolite Robotic Observatory of Stromboli, or THEODOROS); the three last systems provided a continuous monitoring of selected points or sectors of the SdF. Data acquired from different systems have been jointly analyzed to reach a better understanding of the SdF dynamics. Displacement data obtained from the topographic systems are compared with those obtained from GB-InSAR, and the results of the comparison are analyzed and discussed. Furthermore, in this chapter, an example of a warning system that can detect slope instability precursors on the SdF based on a statistical analysis of the data collected by the THEODOROS system is reported.
    Description: Published
    Description: 183-199
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: reserved
    Keywords: Flank instability ; Slope failure ; Terrestrial geodesy ; Ground Based InSAR ; Continuous GPS ; Landslide monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Continuous monitoring of soil CO2 dynamic concentration (which is proportional to the CO2 flux through the soil) was carried out at a peripheral site of Mt. Etna during the period November 1997 - September 2000 using an automated station. The acquired data were compared with SO2 flux from the summit craters measured two to three times a week during the same period. The high frequency of data acquisition with both methods allowed us to analyze in detail the time variations of both parameters. Anomalous high values of soil CO2 dynamic concentration always preceded periods of increased flux of plume SO2, and these in turn were followed by periods of summit eruptions. The variations were modeled in terms of gas efflux increase due to magma ascent to shallow depth and its consequent depressurization and degassing. This model is supported by data from other geophysical and volcanological parameters. The rates of increase both of soil CO2 dynamic concentration and of plume SO2 flux are interpreted to be positively correlated both to the velocity of magma ascent within the volcano and to lava effusion rate once magma is erupted at the surface. Low rates of the increase were recorded before the nine-month-long 1999 subterminal eruption. Higher rates of increase were observed before the violent summit eruption of September-November 1999, and the highest rates were observed during shorter and very frequent spike-like anomalies that preceded the sequence of short-lived but very violent summit eruptions that started in late January 2000 and continued until late June of the same year. Furthermore, the time interval between the peaks of CO2 and SO2 in a single sequence of gas anomalies is likely to be controlled by magma ascent velocity.
    Description: Consiglio Nazionale delle Ricerche of Italy (C.N.R.)Gruppo Nazionale per la Vulcanologia.
    Description: Published
    Description: 80-89
    Description: partially_open
    Keywords: Mt. Etna ; Soil CO2 emissions ; Plume SO2 flux ; COSPEC ; Continuous geochemical monitoring ; Eruptive activity ; Degassing model ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 535 bytes
    Format: 1644622 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We present a comparative study of soil CO2 flux ( ) measured by five groups (Groups 1–5) at the IAVCEI-CCVG Eighth Workshop on Volcanic Gases on Masaya volcano, Nicaragua. Groups 1–5 measured using the accumulation chamber method at 5-m spacing within a 900 m2 grid during a morning (AM) period. These measurements were repeated by Groups 1–3 during an afternoon (PM) period. Measured ranged from 218 to 14,719 g m–2 day–1. The variability of the five measurements made at each grid point ranged from ±5 to 167%. However, the arithmetic means of fluxes measured over the entire grid and associated total CO2 emission rate estimates varied between groups by only ±22%. All three groups that made PM measurements reported an 8–19% increase in total emissions over the AM results. Based on a comparison of measurements made during AM and PM times, we argue that this change is due in large part to natural temporal variability of gas flow, rather than to measurement error. In order to estimate the mean and associated CO2 emission rate of one data set and to map the spatial distribution, we compared six geostatistical methods: arithmetic and minimum variance unbiased estimator means of uninterpolated data, and arithmetic means of data interpolated by the multiquadric radial basis function, ordinary kriging, multi-Gaussian kriging, and sequential Gaussian simulation methods. While the total CO2 emission rates estimated using the different techniques only varied by ±4.4%, the maps showed important differences. We suggest that the sequential Gaussian simulation method yields the most realistic representation of the spatial distribution of , but a variety of geostatistical methods are appropriate to estimate the total CO2 emission rate from a study area, which is a primary goal in volcano monitoring research.
    Description: Published
    Description: 1-30
    Description: partially_open
    Keywords: Carbon dioxide ; Soil gas ; Accumulation chamber method ; Geostatistics ; Masaya volcano ; Volcano monitoring ; Emission rates ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 478 bytes
    Format: 142437 bytes
    Format: text/html
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We modeled Pnl phases from several moderate magnitude earthquakes in the eastern Mediterranean to test methods and develop path calibrations for determining source parameters. The study region, which extends from the eastern part of the Hellenic arc to the eastern Anatolian fault, is dominated by moderate earthquakes that can produce significant damage. Our results are useful for analyzing regional seismicity as well as seismic hazard, because very few broadband seismic stations are available in the selected area. For the whole region we have obtained a single velocity model characterized by a 30 km thick crust, low upper mantle velocities and a very thin lid overlaying a distinct low velocity layer. Our preferred model proved quite reliable for determining focal mechanism and seismic moment across the entire range of selected paths. The source depth is also well constrained, especially for moderate earthquakes.
    Description: Published
    Description: N/A or not JCR
    Description: reserved
    Keywords: Body wave propagation ; earthquake parameters ; lithosphere ; upper-mantle ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 690519 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: in the file
    Description: Published
    Description: 209-218
    Description: reserved
    Keywords: warning systems ; fuzzy logic ; neural networks ; ground deformation ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Format: 176436 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: This study concerns the unstable scarp named Sciara del Fuoco (SDF) at Stromboli volcano, merging geostructural observations, live-cam records in the visible and IR bands, analysis of vertical aerial photographs, and seismic records. These are used to assess morpho-structural changes between 2002 and 2004. The onset of the lava effusion on 28 December, 2002 preceded a gravitational collapse by two days, affecting a wide area of the SDF above and below sea level. We surmise that the collapse enhanced latent instability of the scarp. The 2002–2003 lava flows had a remarkable stabilizing effect on wide portions (〉50%) of the SDF, whilst erosive phenomena continued in the zone not covered by lava. This caused unrelenting regression of the upper landslide scarp toward the summit craters in the form of rockfalls and debris flows. If the crater conduit were involved in the sliding, then a change in eruptive behavior cannot be excluded.
    Description: Published
    Description: L09304
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3767834 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Ground-based thermal imaging is becoming an increasingly important tool for volcano surveillance, however the impact of volcanic plumes on quantitative measurements of surface temperature has not been previously evaluated. Here we use a radiative transfer model to simulate gas (primarily H2O and SO2) and aerosol absorptions over the path between a thermal camera and a heat source on Stromboli volcano, Italy. A FTIR spectrometer was used to quantify path amounts of gases likely to be encountered when making thermal measurements of the active craters. We find that when using a camera sensitive from 7.5 to 13 mm, underestimates of 400 K may be produced when viewing a source with an actual temperature of 1200 K. Cameras that operate between 3 and 5 mm are somewhat less susceptible to these errors.
    Description: Published
    Description: L14311
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1098429 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: In order to test the potentiality of soil CO2 diffuse degassing measurements for the study of underground mass and heat transfer in geothermal systems detailed surveys were performed at Latera Caldera which is an excellent test site, due to the abundant available subsurface data. Over 2500 measurements of soil CO2 flux revealed that endogenous CO2 at Latera Caldera concentrates on a NE-SW band coinciding with a structural high of fractured Mesozoic limestones hosting a water-dominated high-enthalpy geothermal reservoir. The total hydrothermal CO2 degassing from the structural high has been evaluated at 350 t d-1 from an area of 3.1 km2. It has been estimated that such a CO2 release would imply a geothermal liquid flux of 263 kg s-1, with a heat release of 239 MW. The chemical and isotopic composition of the gas indicates a provenance from the geothermal reservoir and that CO2 is partly originated by thermal metamorphic decarbonation in the hottest deepest parts of the system and partly has a likely mantle origin. The ratios of CO2, H2, CH2 and CO to Ar, were used to estimate the T-P conditions of the reservoir. Results cluster at T ~ 200-300°C and PCO2 ~ 100-200 bars, close to the actual well measurements. Finally the approach proved to be an excellent tool to investigate the presence of an active geothermal reservoir at depth and that the H2-CO2-CH4-CO-Ar gas composition is a useful T-P geochemical indicator for such CO2 rich geothermal systems.
    Description: Published
    Description: B12204
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: partially_open
    Keywords: Carbon Dioxide degassing ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...