ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Fault zone
  • Modelling
  • Textbook of informatics
  • Textbook of mathematics
  • AGU  (1)
  • Cambridge Univ. Press
  • Chapman & Hall/CRC
  • Springer Verlag
  • The Royal Society
  • Wiley
Collection
Years
  • 1
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tsakalakis, I., Follows, M. J., Dutkiewicz, S., Follett, C. L., & Vallino, J. J. Diel light cycles affect phytoplankton competition in the global ocean. Global Ecology and Biogeography, 31(9), (2022): 1838-1849, https://doi.org/10.1111/geb.13562.
    Description: Aim Light, essential for photosynthesis, is present in two periodic cycles in nature: seasonal and diel. Although seasonality of light is typically resolved in ocean biogeochemical–ecosystem models because of its significance for seasonal succession and biogeography of phytoplankton, the diel light cycle is generally not resolved. The goal of this study is to demonstrate the impact of diel light cycles on phytoplankton competition and biogeography in the global ocean. Location Global ocean. Major taxa studied Phytoplankton. Methods We use a three-dimensional global ocean model and compare simulations of high temporal resolution with and without diel light cycles. The model simulates 15 phytoplankton types with different cell sizes, encompassing two broad ecological strategies: small cells with high nutrient affinity (gleaners) and larger cells with high maximal growth rate (opportunists). Both are grazed by zooplankton and limited by nitrogen, phosphorus and iron. Results Simulations show that diel cycles of light induce diel cycles in limiting nutrients in the global ocean. Diel nutrient cycles are associated with higher concentrations of limiting nutrients, by 100% at low latitudes (−40° to 40°), a process that increases the relative abundance of opportunists over gleaners. Size classes with the highest maximal growth rates from both gleaner and opportunist groups are favoured by diel light cycles. This mechanism weakens as latitude increases, because the effects of the seasonal cycle dominate over those of the diel cycle. Main conclusions Understanding the mechanisms that govern phytoplankton biogeography is crucial for predicting ocean ecosystem functioning and biogeochemical cycles. We show that the diel light cycle has a significant impact on phytoplankton competition and biogeography, indicating the need for understanding the role of diel processes in shaping macroecological patterns in the global ocean.
    Description: Simons Collaboration on Computational Biogeochemical Modeling of Marine Ecosystems supported M.J.F. and S.D. on CBIOMES grant #549931; C.L.F. on CBIOMES grants #827829 and #553242; and J.J.V. and I.T. on CBIOMES grant #549941. The National Science Foundation supported I.T. and J.J.V. on award #1558710 and J.J.V. on awards #1637630, #1655552 and #1841599.
    Keywords: Biogeography ; Diel light cycle ; Global ocean ; Modelling ; Nutrient cycles ; Phytoplankton ; Resource competition
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Ground deformation data from GPS and differential synthetic aperture radar interferometry (DInSAR) techniques are analyzed to study the July–August 2001 Mount Etna eruption as well as the dynamics preceding and following this event. Five GPS surveys were carried out on the entire Mount Etna network or on its southeastern part, from July 2000 to October 2001. Five ERS-2 ascending passes and three descending ones are used to form five interferograms spanning periods from a month to 1 year, before and encompassing the eruption. Numerical and analytical inversions of the GPS and DInSAR data were performed to obtain analytical models for preeruptive, syneruptive and posteruptive periods. The deformation sources obtained were from the Mogi model: (1) pressure sources located beneath the upper western flank of the volcano, inflating before the eruption onset and deflating afterward; (2) tensile dislocations to model the intrusion of a N-S dike in the central part of the volcano; and (3) two sliding and two normal dislocations to model the eastern and southern flank dynamics. This study confirms that the lower vents of the eruption were fed by a magma stored at depth ranging from 9 to 4 km below sea level, as proposed from petrochemical and geophysical researches. The rising of the magma through the shallow crust started months before the eruption onset but accelerated on the last day; this study suggests that in the volcanic pile the path of the rising magma was driven by the volcano topography. The eastern sliding plane and the interaction between dike intrusion and flank instability have been better defined with respect to previous studies. The sliding motion abruptly accelerated with the dike intrusion, and this continued after the end of the eruption. The acceleration was accompanied by the propagation of the strain field toward the eastern periphery of the volcano.
    Description: We acknowledge the ‘‘Istituto Nazionale di Geofisica e Vulcanologia’’, the Italian ‘‘Dipartimento per la Protezione Civile’’ and the European Community (contract INGV-DPC UR V3_6/36 and VOLUME Project) for their economic contribution to this research. The SAR data are provided by ESA-ESRIN.
    Description: Published
    Description: B06405
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Ground deformation ; GPS ; InSAR ; Mt. Etna ; Modelling ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...