ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
  • Elsevier  (16)
  • AGU  (4)
  • Blackwell Publishing Ltd  (2)
  • American Chemical Society (ACS)
  • Springer Science+Business Media B.V. (formerly Kluwer Academic Publishers)
Collection
Keywords
Years
  • 1
    Publication Date: 2020-11-25
    Description: The Mesa del Caballo trench assessment confirms the Holocene activity of the main strand of the Boconó fault at the Apartaderos pull-apart basin. Fifteen earthquakes, of which fourteen have been radiocarbon dated, have been recognized, spanning the last 20,500 yr. Recurrence intervals of these ≥7 magnitude events are variable. The dominant mode of recurrence is 400–450 yr, and the second one is 900 yr. Eventually some events are 1400–1800 yr apart. We suspect that our seismic record may be incomplete. This could be easily justified by several conditions: most of the earthquake recognitions is based on open-crack filling and they superpose spatially (eventually masking or destroying older fills), trenching may miss some events because the fault is made of en echelon Riedel shears, and a short return period may lead to faint differences between paleosoils few hundreds years of age apart. This trench also images an older activity of the fault, as evidenced by plentiful earthquake-triggered liquefaction features, as well as slumping and rotational sliding. By comparing paleoseismic results between the Morro de Los Hoyos and Mesa del Caballo trenches, it appears that both fault strands bounding the Apartaderos pull-apart basin move simultaneously. Besides, the main strand also coseismically slips twice in between those common events. In other words, the seismic scenario could be that the northern strand recurs every 1200–1350 yr while the southern does every 400– 450 yr. This is also in agreement with a respective slip share of 25 and 75% of the 9–10 mm/yr average slip of the Boconó fault in the Mérida Andes central sector.
    Description: Published
    Description: 38-53
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Active faults ; South America ; Paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-16
    Description: In this paper we present the results of preliminary geomorphic and trenching investigations along the Kahrizak fault. This fault is located south of the highly populated metropolis of Tehran and represents one of the main structures in the area containing important seismic potential. The Kahrizak fault has a very clear expression at the surface where it forms a prominent 35-km-long, 15-m-high scarp on Holocene alluvial deposits. The fault strikes N70°-80°W and dips to the north. Movement is prevalently right-lateral with the northern side of the fault up. Trench excavations exposed a sequence of weathered, massive, alluvial deposits which are dated, by means of radiometric methods, to the Holocene. In the trenches the sequence is intensely deformed by north-dipping, high- and low-angle faults within a 30-m-wide zone. On the basis of stratigraphic and structural relations, some evidence for individual Holocene earthquakes is found; however, we were not able to reconstruct the seismic history of the fault nor to evaluate the size of deformation produced by each event. Because of the possible ~10 m offset of ancient linear hydraulic artifacts (qanáts), that cross the fault, we hypothesize that the most recent event may have occurred in historical times (more recent than 5000 yr B.P.) and it may be one of those reported in this area by the current catalogues of seismicity. Based on these preliminary investigations we estimate an elapsed time between 5000 and 800 years, a maximum slip per event dmax of ~10 m, a minimum Holocene vertical slip rate of ~1 mm/yr versus a horizontal slip rate of ~3.5 mm/yr, a maximum of ~3000 years for the average recurrence time, and an expected Mw = 7.0 to 7.4. These can be considered as a first-hand reference for the activity on this fault.
    Description: Published
    Description: 187-199
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: reserved
    Keywords: Iran ; paleoseismicity ; geomorphology ; seismic hazard assessment ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The development of the 2004–2005 eruption at Etna (Italy) is investigated by means of field surveys to define the current structural state of the volcano. In 2004–2005, a fracture swarm, associated with three effusive vents, propagated downslope from the SE summit crater towards the SE. Such a scenario is commonly observed at Etna, as a pressure increase within the central conduits induces the lateral propagation of most of the dikes downslope. Nevertheless, some unusual features of this eruption (slower propagation of fractures, lack of explosive activity and seismicity, oblique shear along the fractures) suggest a more complex triggering mechanism. A detailed review of the recent activity at Etna enables us to better define this possible mechanism. In fact, the NW–SE-trending fractures formed in 2004–2005 constitute the southeastern continuation of a N–S-trending fracture system which started to develop in early 1998 to the east of the summit craters. The overall 1998–2005 deformation pattern therefore forms an arcuate feature, whose geometry and kinematics are consistent with the head of a shallow flank deformation on the E summit of Etna. Similar deformation patterns have also been observed in analogue models of deforming volcanic cones. In this framework, the 2004–2005 eruption was possibly induced by a dike resulting from the intersection of this incipient fracture system with the SE Crater. A significant acceleration of this flank deformation may be induced by any magmatic involvement. The central conduit of the volcano is presently open, constantly buffering any increase in magmatic pressure and any hazardous consequence can be expected to be limited. A more hazardous scenario may be considered with a partial or total closing of the central conduit. In this case, magmatic overpressure within the central conduit may enhance the collapse of the upper eastern flank, triggering an explosive eruption associated with a landslide reaching the eastern lower slope of the volcano.
    Description: Published
    Description: 195–206
    Description: reserved
    Keywords: eruption triggering ; volcano-tectonics ; fracture fields ; flank spreading ; Mt. Etna ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2594507 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The westernmost part of the Gulf of Corinth (Greece) is an area of very fast extension (~15 mm/yr according to geodetic measurements) and active normal faulting, accompanied by intense coastal uplift and high seismicity. This study presents geomorphic and biological evidence of Holocene coastal uplift at the western extremity of the Gulf, where such evidence was previously unknown. Narrow shore platforms (benches) and rare notches occur mainly on Holocene littoral conglomerates of uplifting small fan deltas. They are perhaps the only primary paleoseismic evidence likely to provide information on earthquake recurrence at coastal faults in the specific part of the Rift system, whereas dated marine fauna can provide constraints on average Holocene coastal uplift rate. The types of geomorphic and biological evidence identified are not ideal, and there are limitations and pitfalls involved in their evaluation. In a first approach, 5 uplifted paleoshorelines may be indentified, at 0.4- 0.7, 1.0-1.3, 1.4-1.7, 2.0-2.3 and 2.8-3.4 m a.m.s.l. They probably formed after 1728 or 2250 Cal. B.P. (depending on the marine reservoir correction used in the calibration of measured radiocarbon ages). A most conservative estimate for the average coastal uplift rate during the Late Holocene is 1.6 or 1.9 mm/yr minimum (with different amounts of reservoir correction). Part of the obtained radiocarbon ages of Lithophaga sp. allows for much higher Holocene uplift rates, of the order of 3-4 mm/yr, which cannot be discarded given that similar figures exist in the bibliography on Holocene and Pleistocene uplift at neighbouring areas. They should best be cross-checked by further studies though. That the identified paleoshoreline record corresponds to episodes of coastal uplift only, cannot be demonstrated beyond all doubt by independent evidence, but it appears the most likely interpretation, given the geological and active-tectonic context and, what is known about eustatic sea-level fluctuations in the Mediterranean. Proving that the documented uplifts were abrupt (i.e., arguably coseismic), is equally difficult, but reasonably expected and rather probable. Five earthquakes in the last ca. 2000 yrs on the coastal fault zone responsible for the uplift, compare well with historical seismicity and the results of recent on-fault paleoseismological studies at the nearby Eliki fault zone. Exact amounts of coseismic uplift cannot be determined precisely, unless the rate of uniform ("regional") non-seismic uplift of Northern Peloponnesus at the specific part of the Corinth Rift is somehow constrained.
    Description: EU project 3HAZ-Corinth
    Description: Published
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Holocene Shorelines ; Coastal tectonics ; Paleoseismology ; Uplift ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Eight cases of large-scale gravitational movements (with evidence of rock-slide type displacements) evolving close to Quaternary faults have been analysed in the Central Apennines. Geomorphological and structural surveys have defined the relationship between the gravitational displacements and the tectonically-controlled modifications of the landscape. The evolution of all the investigated cases has been conditioned by the presence of fault planes located along the mountain slopes. In most cases (Mt. Cefalone, Cima della Fossa, Villavallelonga, Casali d'Aschi, Gioia dei Marsi), the faults played or are playing a primary role in increasing the local relief and their activity represents the main geomorphic factor conditioning the gravitational movements. This kind of relationship has been observed along mountain slopes bordering depressions which have not been drained for most of their geomorphic history or have been characterised by an evolution of the hydrographic network that has been conditioned only by the local tectonic subsidence. In such cases, the gravitational movements develop in the footwalls of the faults. In other cases (Fiamignano, Pescasseroli) the faults have played a passive role, since they only bound the sliding masses and coincide with the surficial expressions of the sliding planes. Therefore, the gravitational displacements develop in the hangingwall of the faults. The evolution is conditioned by the incision of the hydrographic network in response to regional Quaternary uplift. The illustrated case studies provide a wide range of examples of the gravitational response of slopes to the modifications of the landscape due to linear and areal tectonics. The identification of the geomorphic traces of the large-scale gravitational movements along fault-controlled mountain fronts has implications for hazard, particularly for the evolution of the displacement. The quantitative analysis of the vertical displacements and data on the characteristics of the surface breaking during historical earthquakes demonstrate that along-fault offsets strongly increases where the unstable large-scale rock masses are located. Therefore, the large coseismic vertical offset may represent a major problem for the displacement of utilities and may represent a potential cause for the sudden and catastrophic evolution of the gravitational movement.
    Description: Published
    Description: 201-228
    Description: JCR Journal
    Description: reserved
    Keywords: Active tectonics ; Normal faulting ; Large-scale gravitational deformation ; Rock slide ; Natural hazard ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-03
    Description: Two layers of fine sand of marine origin occur in a sequence of organic rich colluvia in an archaeological excavation at Torre degli Inglesi, on Capo Peloro, northeast Sicily. Stratigraphic and micropaleontologic analyses support the hypothesis that these layers are related to deposition due to paleotsunami waves. Their ages are constrained both with radiocarbon and archaeological datings. The age of the oldest layer is coincident with the 17 A.D. earthquake that hit Reggio Calabria but for which no tsunami was previously reported. The age of the youngest layer can be only constrained in the range 3rd– 19th century and is tentatively associated to the 6 Feb. 1783 event.
    Description: Italian Civil Protection Department in the frame of the 2004 – 2006 agreement with Istituto Nazionale di Geofisica e Vulcanologia – INGV (Seismological Project S2) and E.C. project TRANSFER (contract 037058)
    Description: Published
    Description: L05311
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: 1783 earthquake ; AD 17 earthquake ; paleoseismology ; tsunami inundation hazard ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Italy has one of the most complete and historically extensive seismic catalogues in the World due to a unique and uninterrupted flow of written sources that have narrated its seismic history since about the end of the Iron Age. Seismic hazard studies have therefore always been mainly based upon this huge mass of data. Nevertheless, the Italian catalogue probably “lacks” many M≥6.5 events, the seismogenetic structures responsible for which are characterized by recurrence times that are longer than the time span covered by our historical sources. For these reasons, and as in other countries, earthquake data that in Italy have been derived from paleoseismological studies should finally become a necessary ingredient in seismic risk assessment. Indeed, over the past 20 years, some hundred trenches have been excavated, supplying reliable and conclusive data on the recent activities of many faults. Through to many robust datings of surface fault events, these studies have provided the ages of several unknown or poorly known M≥6.5 earthquakes. Here, we summarize the state of the art of paleoseismology in Italy, and present a first catalogue of 56 paleoearthquakes (PCI) that occurred mainly in the past 6 kyr. The PCI integrates the historical/instrumental seismic catalogue, and extends it beyond the recurrence time of the seismogenetic faults (2000±1000 yr). We feel confident that the use of the PCI will enhance future probabilistic seismic hazard assessment, and thus contribute to more reliable seismic risk mitigation programs.
    Description: Published
    Description: 89-117
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Italy ; paleoearthquakes ; catalogue of paleoseismicity ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamic of the volcano, marking the passage from a period (March 1993 – June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveal a southward motion of the upper southern part of the volcano, driven by a NNW-SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: Stress release ; Dike ; Volcano-tectonics ; Flank instability ; Mount Etna ; Instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We have here analysed two normal faults of the central Apennines, one that affects the south-western slopes of theMontagna dei Fiori–Montagna di Campli relief, and the other that is located along the south-western border of the Leonessa intermontane depression. Through this analysis, we aim to better understand the reliability of geomorphic features, such as the fresh exposure of fault planes along bedrock scarps as certain evidence of active faulting in the Apennines, and to define the Quaternary kinematic history of these tectonic structures. The experience gathered from these two case studies suggests that the so-called ‘geomorphic signature’ of recent fault activity must be supported by wider geomorphologic and geologic investigations, such as the identification of displaced deposits and landforms not older than the Late Pleistocene, and/or an accurate definition of the slope instabilities. Our observations indicate that the fault planes studied are exposed exclusively because of the occurrence of non-tectonic processes, i.e. differential erosion and gravitational phenomena that have affected the portions of the slopes that are located in the hanging wall sectors. The geological evidence we have collected indicates that the Montagna dei Fiori–Montagna di Campli fault was probably not active during the whole of the Quaternary, while the tectonic activity of the Leonessa fault ceased (or strongly reduced) at least during the Late Pleistocene, and probably since the Middle Pleistocene. The present lack of activity of these tectonic structures suggests that the fault activation for high magnitude earthquakes that produce surface faulting is improbable (i.e. M〉5.5–6.0, with reference to the Apennines, according to Michetti et al. [Michetti, A.M., Brunamonte, F., Serva, L.,Vittori, E. (1996), Trench investigations of the 1915 Fucino earthquake fault scarps (Abruzzo, Central Italy): geological evidence of large historical events, J. Geoph. Res.,101, 5921–5936; Michetti, A.M., Ferreli, L., Esposito, E., Porfido, S., Blumetti, A.M., Vittori, E., Serva, L., Roberts, G.P. (2000)]). If, according to the current view, the shifting of the intra-Apennine extension towards the Adriatic sectors is still active, the Montagna dei Fiori–Montagna di Campli fault might be involved in active extensional deformation in the future.
    Description: Partnership between the Istituto Nazionale di Geofisica e Vulcanologia and the Provincia di Teramo (2004–2005)
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Bedrock fault scarps ; Exhumation ; Non-tectonic processes ; Seismic hazard ; Extensional domain migration ; Central Italy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: We analyze a seismic sequence which occurred in 2000 along the Northern Apennines accretionary wedge (Italy). The sequence developed within the Cretaceous–Triassic limestones of the tectonic wedge, where methane-rich and oil reservoirs are stored. Ruptures mainly developed on WNW–ESE striking thrusts. The compressive stress field is consistent with that acting at regional scale in Northern Apennines. Seismic parameters indicate that fluids are involved in the seismogenic process. The amplitudes of the P and S phases and data from some stations evidence a P to S conversion within Vp/Vs=2.1 layer. The attenuation properties of crust show a higher attenuation zone located west of the epicentral cloud. Eight hundred aftershocks delineate a sub-vertical cloud of events between 7 and 14 km depth. The space–time evolution of the aftershocks is consistent with a diffusive spreading (diffusivity=1.9 m2/s) along vertically superimposed thrusts. Diffusion also controls the time evolution of the sequence. Fluid pressure is estimated to be roughly equal to the vertical, lithostatic stress. The overpressure within reservoirs develops by tectonic compaction processes. The fluids upraise along sub-vertical fractures related to the shortening of the wedge. The 2000 sequence occurred in an area that separates a thermal and deeper petroleum system from a shallower biogenic system. The divider of these systems controls the attenuation properties of the crust. The fluid–rock interaction at seismogenetic depth is related to hydrothermal processes more than to compaction. In accretionary wedges, seismicity activating superimposed thrusts may drive methane and oil upraising from the upper crust.
    Description: Published
    Description: 99-109
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: seismicity ; fluids ; accretionary wedge ; thrust ; geodynamics ; Northern Apennines ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...