ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis  (13)
  • 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
  • AGU  (13)
  • Wiley  (6)
  • Blackwell Publishing  (2)
  • American Chemical Society
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: SKS splitting at the Calabrian subduction zone, with delay times (δt) up to 3s, reveals the presence of a strong anisotropic fabric. Fast directions (ϕ) are oriented NNE-SSW in the Calabrian Arc (C.A.) and rotate NNW-SSE to the north following the arcuate shape of the subducting plate. We interpret the trench-parallel ϕ as local-scale mantle flow driven by the retrograde motion of the slab; the absence of trench perpendicular ϕ below the Southern Apennines (S.A.) excludes the presence of a seismically detectable return flow at its NE edge. This may be due to the relative youth and limited width of the S.A. slab tear. A possible return flow is identified farther north at the boundary of the S.A. and Central Apennines. Different and weaker anisotropy is present below the Apulian Platform (A.P.). This implies that the influence of the slab rollback in the sub-slab mantle is limited to less then 100 km from the slab.
    Description: Published
    Description: L05302
    Description: JCR Journal
    Description: open
    Keywords: shear-wave splitting, calabrian subduction zone ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1261235 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We modeled Pnl phases from several moderate magnitude earthquakes in the eastern Mediterranean to test methods and develop path calibrations for determining source parameters. The study region, which extends from the eastern part of the Hellenic arc to the eastern Anatolian fault, is dominated by moderate earthquakes that can produce significant damage. Our results are useful for analyzing regional seismicity as well as seismic hazard, because very few broadband seismic stations are available in the selected area. For the whole region we have obtained a single velocity model characterized by a 30 km thick crust, low upper mantle velocities and a very thin lid overlaying a distinct low velocity layer. Our preferred model proved quite reliable for determining focal mechanism and seismic moment across the entire range of selected paths. The source depth is also well constrained, especially for moderate earthquakes.
    Description: Published
    Description: N/A or not JCR
    Description: reserved
    Keywords: Body wave propagation ; earthquake parameters ; lithosphere ; upper-mantle ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 690519 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The Colli Albani is a Quaternary quiescent volcano, located a few kilometers southeast of Rome (Italy). During the past decade, seismic swarms, ground deformation, and gas emissions occurred in the southwestern part of the volcano, where the last phreatomagmatic eruptions (27 ka) developed, building up several coalescent craters. In the frame of a Dipartimento Protezione Civile – Istituto Nazionale di Geofisica e Vulcanologica project aimed at the definition and mitigation of volcanic hazard, a temporary array of seismic stations has been deployed on the volcano and surrounding areas. We present results obtained using receiver functions analysis for eight stations, located upon and around the volcanic edifice, and revealing how the built of the volcanic edifice influenced the prevolcanic structures. The stations show some common features: the Moho is almost flat and located at 23 km, in agreement with the thinning of the Thyrrenian crust. Also the presence of a shallow limestone layer is a stable feature under every station, with a variable thickness between 4 and 5 km. However, some features change from station to station, indicating a local complexity of the crustal structure: a shallow discontinuity dividing the Plio-Pleistocene sediments by the Meso-Cenozoic limestones, and a localized anisotropic layer, in the central part of the old structure, which points of the deformation of the limestones. Other two strongly anisotropic layers are detected under the stations in lower crust and upper mantle, with symmetry axis directions related to the evolution of the volcano complex.
    Description: Published
    Description: B09313
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Receiver Function ; Colli Albani ; crustal structure ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: A crustal tomography of seismic wave velocity was performed in the contact zone between the southern Tyrrhenian, Sicilian and Ionian tectonic units, a zone where the lithospheric structure can be expected to furnish evident signatures of dynamics related to the Tyrrhenian subduction process. A dataset of 10241 P and 5597 S readings from 932 local earthquakes recorded between 1978 and 2001 by stations operating in Sicily and Calabria was inverted by the SIMULPS12 algorithm for simultaneous computation of hypocenter parameters and Vp and Vp/Vs three dimensional distributions. The study brought significant improvement in the knowledge of the local velocity structure, furnishing new information useful to better identify the local tectonic units. The results appear to be compatible with the most recent hypotheses regarding the geodynamics of the study region.
    Description: Published
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: Continental crust ; Oceanic crust ; Body wave propagation ; Evolution of the Earth: Tomography ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We present a new surface-wave tomographic study of the broad European and Mediterranean region. Our goal is to enhance the resolution of previously published group velocity models using new data from European permanent seismic networks and a dense broad-band array in Northern Apennines (RETREAT). We measure fundamental mode Rayleigh and Love wave group velocities from long-period seismograms recorded at regional distance (between 600 and 7000 km). Our measurement technique is based on iterative application of multiple filters and phase-matched filters; we accurately estimate dispersion curves for more than 1500 Rayleigh wave and about 850 Love wave paths in the period range 35–170 s. Consistency of measurements is evaluated by comparing ray clusters from sample earthquakes to closely spaced RETREAT stations. In the whole data set, measurement errors in group velocity decrease with increasing distance and show to be caused by inaccuracy in the estimate of group arrival time. We calculate maps of Love and Rayleigh group velocity at selected periods by linear tomographic inversion, accounting for group arrival time errors and evaluating a posteriori group slowness errors. Data coverage in this region is not uniform, and it is highly influenced by the uneven distribution of earthquakes and seismic stations. We therefore build a laterally heterogeneous reference model by inverting a global data set of group velocity derived from the phase velocity library of Ekström et al. (1997). Use of this reference as an a priori model during inversion improves preliminary data coverage at the borders of our study region and warrants consistency with global models. The implications of different regularization constraints (mathematically equivalent to norm damping or smoothing with different criteria) are analysed and compared. Group velocity maps confirm the large-scale geological lineaments known for the region: short-periods maps differentiate well among thinner oceanic and thicker continental crust; the most dominant feature in long-period maps is the difference between the fast Precambrian East European Platform and the low velocity signature of central Europe and western Mediterranean, separated by a sharp gradient in correspondence of the Tornquist–Tesseyre Zone. The seismically active Tethyan Belt is clearly marked by a continuous slow anomaly. Smaller scale, possibly thermally related, low velocity anomalies are found under Iceland and Mid-Atlantic Ridge, Rhine Graben and Tyrrhenian back-arc basin, whereas the Hellenic Arc is characterized by fast velocity.
    Description: NERIES INFRAST-2.1-026130 SPICE EC FP6 Marie Curie RTN
    Description: Published
    Description: 1050-1066
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Inverse theory ; Surface waves and free oscillations ; Seismic tomography ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We present results from a teleseismic receiver-function study of the crustal structure in the central Apennines (Italy). Data from fifteen stations deployed in a linear transect running along the N42 degree parallel were used for the analysis. A total number of 364 receiver functions were analyzed. The crustal structure has been investigated using the neighborhood algorithm inversion scheme proposed by Sambridge [1999a], obtaining crustal thicknesses, bulk crustal VP/VS ratio and velocity-depth models. In each inversion, the degree of constraint of the different parameters has been appraised by the Bayesian inference algorithm by Sambridge [1999b]. The study region is characterized by crustal complexities and intense tectonic activity (recent volcanism, orogenesis, active extensional processes), and these complexities are reflected in the receiver functions. However, the relatively close spacing among the seismometers (about 20 km) helped us in the reconstruction of the crustal structure and Moho geometry along the transect. Crossing the Apennines from west to east, the Moho depth varies by more than 20 km, going from a relatively shallow depth (around 20 km) on the Tyrrhenian side, deepening down to about 45 km depth beneath the external front of the Apenninic orogen, and rising up again to about 30 km depth in correspondence of the Adriatic foreland. Despite the strong variability of the crustal thickness, the average crustal VS values show little variation along the transect, fluctuating around 3 km/s. The average VP values obtained from the VS and VP /VS are generally lower than 6 km/s.
    Description: Published
    Description: B12306
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: Crustal structure ; Receiver Function ; central Apennines ; Moho ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-03
    Description: A station (FAGN) installed on a segment of the fault system that generated the April 2009 L’Aquila earthquakes shows larger ground motions compared to nearby stations. Spectral ratios using 304 earthquakes result in a station amplification significantly varying event by event in the frequency band 1–8 Hz. The resulting pattern of amplitude dependence on causative earthquake location reveals that the strongest (up to a factor of 10) amplifications occur for tightly clustered aftershocks aligned with the fault dip beneath FAGN thus indicating a fault‐guided effect. Fault models are investigated in a grid‐search approach by varying velocity, Q, width and depth of the fault zone. Although the problem solution is not unique and there are strong trade‐offs among the model parameters, constraints from observations yield a deep trapping structure model where the most likely values of velocity reduction, Q and damage zone width are 25%, 20, and 280 m, respectively.
    Description: Published
    Description: L24305
    Description: 3.1. Fisica dei terremoti
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: L'Aquila earthquake ; fault zone ; trapped waves ; site amplification ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The dispersive properties of surface waves are used to infer earth structure in the Eastern Mediterranean region. Using group velocity maps for Rayleigh and Love waves from 7-100 s, we invert for the best 1D crust and upper-mantle structure at a regular series of points. Assembling the results produces a 3D lithospheric model, along with corresponding maps of sediment and crustal thickness. A comparison of our results to other studies finds the uncertainties of the Moho estimates to be about 5 km. We find thick sediments beneath most of the Eastern Mediterranean basin, in the Hellenic subduction zone and the Cyprus arc. The Ionian Sea is more characteristic of oceanic crust than the rest of the Eastern Mediterranean region as demonstrated in particular by the crustal thickness. We also find significant crustal thinning in the Aegean Sea portion of the back-arc, particularly towards the south. Notably slower S-wave velocities are found in the upper-mantle, especially in the northern Red Sea and Dead Sea Rift, central Turkey, and along the subduction zone. The low velocities in the upper-mantle that span from North Africa to Crete, in the Libyan Sea, might be an indication of serpentinized mantle from the subducting African lithosphere. We also find evidence of a strong reverse correlation between sediment and crustal thickness which, while previously demonstrated for extensional regions, also seems applicable for this convergence zone.
    Description: Published
    Description: 1139–1152
    Description: JCR Journal
    Description: reserved
    Keywords: surface waves ; Eastern Mediterranean ; lithosphere ; Moho depth ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2686330 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: On 10 September 2005 at 1711 LT (1511 UT) a loud boom was heard on the Ischia island. A clear seismic signal was also recorded by the seismic monitoring network of the Neapolitan volcanic areas (Ischia, Campi Flegrei, and Mount Vesuvius) and on a regional station (Mount Massico). On the basis of the seismic recordings and on acoustic phenomena reports, we relate this event to the atmospheric explosion (airburst) of a bolide about 15 km SW of Ischia at an elevation of about 11.5 km. The location has been obtained through nonlinear traveltime inversion in a realistic atmospheric model including wind effects. We show, using statistical estimators, how the traveltime pattern is due to both atmospheric winds and the bolide trajectory. Using the same reasoning we discard a human origin (supersonic jet or sea-air missile). In addition, we also propose a new algorithm for fast acoustic traveltime computation for a supersonic moving source.
    Description: Published
    Description: B10307
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2303721 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: A new 3-D model for the P-wave velocity structure of the Southern Tyrrhenian Subduction Zone (STSZ) is determined from nonlinear inversion of relative arrival times of teleseismic events. The data used in the imaging are the travel time residuals of both direct, P and PKPdf, and secondary pP, sP, PcP, PKPbc phases, computed with respect to the global 1-D velocity model ak135. 2308 teleseismic waveforms were collected for this study from 109 events recorded by the Italian National Seismic Network (RSNC) during 1988-1998. The velocity perturbation eld is reconstructed gradually by means an iterative sequence of linearized inversions, incorporating a 3-D minimum travel time ray tracing. The tomographic images reveal a broad highvelocity zone dominating the pattern of lateral variations beneath the Southern Tyrrhenian Sea and Calabria. This fast structure extends laterally for a maximum of 350 km, from northern Sicily to southern Campania, and vertically for at least 400 km, from the uppermost mantle down to 500 km depth. Below 350 km the geometry of the depicted slab is characterized by horizontal deflection of the subducting lithosphere towards the central Tyrrhenian basin.
    Description: Published
    Description: 3709-3712
    Description: JCR Journal
    Description: reserved
    Keywords: P-wave velocity ; teleseismic tomography ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...