ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring  (10)
  • Inversion
  • Springer Science  (4)
  • Springer Science+Business Media B.V.  (4)
  • Wiley  (4)
  • 3
Collection
  • 1
    Publication Date: 2017-04-04
    Description: The May 20, 2012, Emilia Ml 5.9 earthquake was followed by some major aftershocks, well recorded by a large number of temporary stations that were installed to monitor the sequence. These additional recordings allowed us a thorough testing of the performance of the ShakeMap—a procedure designed to provide rapid information on the experienced ground motion. We found that the shakemaps for the May 29, 2012, Ml 5.8 earthquake, obtained using the permanent stations only, underestimate significantly the ground motion computed with the highest station density, especially for PSA at long periods (T=3.0 s). This low-frequency motion is controlled primarily by the surface waves recorded in the Po plain: the observed site effects are likely not accounted properly by the site correction coefficient based on Vs30 as implemented in the ShakeMap procedure. The shakemaps determined during the seismic sequence have been included in an Italian national law that was passed after the 2012 earthquake. According to this law, the factories safety verifications were bound to the comparison between the shakemaps and the design acceleration required by the current national seismic code.We then decide to appraise the impact of the shakemap accuracy on the law provisions. Following the law ecommendations, we have estimated the possible errors resulting from the incomplete evaluation of the ground shaking: our results show that, if the complete dataset were available at the time of the law approval, the number of buildings for which the safety check was required would have been significantly smaller.
    Description: Published
    Description: 2147-2164
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: JCR Journal
    Description: restricted
    Keywords: Emilia earthquake ; Shakemap ; Strong ground motion ; Seismic hazard ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-07
    Description: We present a methodology for determining the elastic properties of the shallow crust from inversion of surface wave dispersion characteristics through a fully nonlinear procedure. Using volcanic tremor data recorded by a small-aperture seismic array on Mount Etna, we measured the surface waves dispersion curves with the multiple signal classification technique. The large number of measurements allows the determination of an a priori probability density function without the need of making any assumption about the uncertainties on the observations. Using this information, we successively conducted the inversion of phase velocities using a probabilistic approach. Using a wave-number integration method, we calculated the predicted dispersion function for thousands of 1-D models through a systematic grid search investigation of shear-wave velocities in individual layers. We joined this set of theoretical dispersion curves to the experimental probability density function (PDF), thus obtaining the desired structural model in terms of an a posteriori PDF of model parameters. This process allowed the representation of the objective function, showing the non-uniqueness of the solutions and providing a quantitative view of the uncertainties associated with the estimation of each parameter. We then compared the solution with the surface wave group velocities derived from diffuse noise Green’s functions calculated at pairs of widely spaced (~5–10 km) stations. In their gross features, results from the two different approaches are comparable, and are in turn consistent with the models presented in several earlier studies.
    Description: Published
    Description: 335-346
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Surface waves ; Volcanic tremor ; Dispersion curves ; Nonlinear inversion ; Etna volcano ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In this paper we investigate nature and properties of narrow-band, transient seismic signals observed by a temporary array deployed in the Val Tiberina area (central Apennines, Italy). These signals are characterized by spindle-shaped, harmonic waveforms with no clear S-wave arrivals. The first portion of the seismograms exhibits a main frequency peak centred at 4.5 Hz, while the spectrum of the slowly decaying coda is peaked at about 2 Hz. Events discrimination is performed using a matched-filtering technique, resulting in a set of 2466 detections spanning the 2010 January–March time interval. From a plane-wave-fitting procedure, we estimate the kinematic properties of signals pertaining to a cluster of similar events. The repetition of measurements over a large number of precisely aligned seismograms allows for obtaining a robust statistics of horizontal slownesses and propagation azimuths associated with the early portion of the waveforms. The P-wave arrival exhibits horizontal slownesses around 0.1 s km−1, thus suggesting waves impinging at the array almost vertically. Separately, we use traveltimes measured at a sparse network to derive independent constraints on epicentral location. Ray parameters and azimuths are calibrated using slowness measurements from a local, well-located earthquake. After this correction, the joint solution from traveltime inversion and array analysis indicates a source region spanning the 1–3 km depth interval. Considerations related to the source depth and energy, and the occurrence rate which is not related to the daily and weekly working cycles, play against a surface, artificial source. Instead, the close resemblance of these signals to those commonly observed in volcanic environments suggest a source mechanism related to the resonance of a fluid–filled fracture, likely associated with instabilities in the flux of pressurized CO2.
    Description: Published
    Description: 918-928
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Fracture and flow ; Earthquake source observations ; Interface waves ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-03
    Description: The idea of this Special Issue comes from a “joint venture” of research groups from several Italian and European Institutions (Istituto Nazionale di Geofisica e Vulcanolo- gia and University of Basilicata, Italy; GeoForschungsZentrum-GFZ, Germany; CETE Méditerranée—LRPC Nice and OCA-UMR Géoazur, France) which carried out a large seismic survey for site effect estimation in the wide area hit by the 2009 L’Aquila, Italy, earthquake (Fig. 1). The Mw 6.3 mainshock of April 6th, 2009, represented the most damaging event in Italy since the 1980 Irpinia earthquake (Mw 6.9). Several large aftershocks (Mw 〉 5) and thousands of smaller events occurred in the following months and the deployment of differ- ent rapid response seismic networks from Italy, France and Germany allowed the scientific community to collect a very large and high quality data set, probably the largest ever acquired during a normal fault seismic sequence (Marzorati et al. 2011).
    Description: Published
    Description: 691-695
    Description: JCR Journal
    Description: restricted
    Keywords: Aquila Earthquakes of April 2009 ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer Science+Business Media B.V.
    Publication Date: 2017-04-04
    Description: Rapid magnitude estimate procedures represent a crucial part of proposed Earthquake Early Warning Systems. Most of these estimates are fo- cused on the first part of the P-wave train, the earlier and less destructive part of the ground motion that follows an earthquake. Allen and Kanamori [2003] proposed to use the predominant period of the P-wave to determine the magnitude of a large earthquake at local distance and Olivieri et al. [2008] calibrated a specific relation for the Italian region. The Mw 6.3 earthquake that hit Central Italy on April 6, 2009 and the largest aftershocks provide a useful dataset to validate the proposed relation and discuss the risks con- nected to the extrapolation of magnitude relations with a poor dataset of large earthquake waveforms. A large discrepancy between ML estimated by means of τ max evaluation and standard ML (6.8 ± 1.5 vs. 5.9 ± 0.4) suggests using p caution when ML vs. τmax calibrations do not include a relevant dataset of p large earthquakes. Effects from large residuals could be mitigated or removed introducing selection rules on τ function, by regionalizing the ML vs. τmax pp function in the presence of significant tectonic or geological heterogeneity, and using probabilistic and evolutionary methods.
    Description: Published
    Description: 607-614
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquake ; Magnitude ; Earthquake Early Warning Systems ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The Fucino basin (Central Italy) is one of the largest intermountain alluvial plain in the Appennines range. It has a tectonic origin related to the presence of important systems of faults located in its northern and eastern edges. Some of these faults are still active and capable of generating strong seismic events. Site effects related to the soft soils filling the basin can be very important and efforts to model the local seismic response of the basin have been performed in the past. In this paper we show the preliminary results of a seismic network installed in the Fucino area in order to collect information about site amplification effects and geometry of the basin. We analyze ambient seismic vibrations and recordings of about 150 local earthquakes mainly related to the seismic sequence of the April 6th 2009 Mw 6.3 L’Aquila event. Moreover the strongest events of L’Aquila sequence were analyzed at the three strong-motion permanent stations operating in the area. Using standard spectral techniques we investigate the variation of resonance frequencies within the basin. The ground motion recorded in the Fucino plain is mainly characterized by strong energy at low-frequencies (f 〈 1 Hz) affecting both horizontal and vertical components. This is particularly evident for stations deployed in correspondence of very thick deposits of sedimentary filling, where a significant increase of ground-motion amplitude and duration is caused by locally generated surface waves. The amplification at low-frequencies (〈 1 Hz) on the horizontal components can reach up a factor of 10 in comparison to nearby stiff sites. However, we found evidences of seismic amplification phenomena also for stiff sites surrounding the basin, including stations of the Italian strong motion network. The independent geological information, the shallow shear-velocity profiles available for the basin can be combined with resonance frequencies of the sites for deriving representative geological sections to be used as base for future numerical 2D-3D modeling of the basin.
    Description: Published
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: Fucino Basin ; Resonance frequency ; Site amplification ; Seismic monitoring ; Strong motion stations ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-03
    Description: After an earthquake, rapid, real-time assessment of hazards such as ground shaking and tsunami potential is important for early warning and emergency response. Tsunami potential depends on sea floor displacement, which is related to the length, L, width, W, mean slip, D, and depth, z, of earthquake rupture. Currently, the primary discriminant for tsunami potential is the centroid-moment tensor magnitude, MwCMT, representing the seismic potency LWD, and estimated through an indirect, inversion procedure. The obtained MwCMT and the implied LWD value vary with the depth of faulting, assumed earth model and other factors, and is only available 30 min or more after an earthquake. The use of more direct procedures for hazard assessment, when available, could avoid these problems and aid in effective early warning. Here we present a direct procedure for rapid assessment of earthquake tsunami potential using two, simple measures on P-wave seismograms – the dominant period on the velocity records, Td, and the likelihood that the high-frequency, apparent rupture-duration, T0, exceeds 50-55 sec. T0 can be related to the critical parameters L and z, while Td may be related to W, D or z. For a set of recent, large earthquakes, we show that the period-duration product TdT0 gives more information on tsunami impact and size than MwCMT and other currently used discriminants. All discriminants have difficulty in assessing the tsunami potential for oceanic strike-slip and back-arc or upper-plate, intraplate earthquake types. Our analysis and results suggest that tsunami potential is not directly related to the potency LWD from the “seismic” faulting model, as is assumed with the use of the MwCMT discriminant. Instead, knowledge of rupture length, L, and depth, z, alone can constrain well the tsunami potential of an earthquake, with explicit determination of fault width, W, and slip, D, being of secondary importance. With available real-time seismogram data, rapid calculation of the direct, period- duration discriminant can be completed within 6-10 min after an earthquake occurs and thus can aid in effective and reliable tsunami early warning.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: open
    Keywords: Earthquake dynamics ; Earthquake source observations ; Seismic monitoring ; Body waves ; Early warning ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: A merged, high-quality waveform dataset from different seismic networks has been used to improve our understanding of lateral seismic attenuation for Northern Italy. In a revious study on the same region, Morasca et al. (Bull Seismol Soc Am 98:1936–1946, 2008) were able to resolve only a small area due to limited data coverage. For this reason, the interpretation of the attenuation anomalies was difficult given the complexity of the region and the poor resolution of the available data. In order to better nderstand the lateral changes in the crustal structure and thickness of this region, we selected 770 earthquakes recorded by 54 stations for a total of almost 16,000 waveforms derived from seismic networks operating totally or partially in Northern Italy. Direct S-wave and coda attenuation images were obtained using an amplitude ratio technique that eliminates source terms from the formulation. Both direct and early-coda amplitudes are used as input for the inversions, and the results are compared. Results were obtained for various frequency bands ranging between 0.3 and 25.0 Hz and in all cases show significant improvement with respect to the previous study since the resolved area has been extended and more crossing paths have been used to image smaller scale anomalies. Quality-factor estimates are consistent with the regional tectonic structure exhibiting a general trend of low attenuation under the Po Plain basin and higher values for the Western Alps and Northern Apennines. The interpretation of the results for the Eastern Alps is not simple, possibly because our resolution for this area is still not adequate to resolve small scale structures.
    Description: Published
    Description: 727-737
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic attenuation tomography ; Coda waves ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Springer Science
    Publication Date: 2022-05-24
    Description: Research in the fields of earthquake engineering or engineering seismology requires strong motion data for several applications, such as the development of ground motion prediction equations, the evaluation of shaking scenarios, the definition of probabilistic hazard maps and the formulation of seismic codes. Italy is one of the most hazardous countries in Europe and several moderate to strong earthquakes occurred since the early 1970s, when an early stage strong motion monitoring began. During the past 30 years strong motion dataweremainly collected by the italian strong motion network, initially managed by the Italian electricity company and then by the Italian civil protection, and by several regional strong-motion networks, installed in late 1990s.After three decades of monitoring the Italian strong motion patrimony has become relevant, and the need of an organized strong-motion archive, accessible on the world wide web has turned out to be vital. This special issue of the Bulletin of Earthquake Engineering contains nine articles with the aim of illustrating to the scientific community the progress achieved in Italy in the field of strong motion monitoring and strong motion data archiving and dissemination.
    Description: Published
    Description: 1073–1074
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: restricted
    Keywords: strong motion monitoring ; strong motion data archiving and dissemination ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The necessity of a dense network in Northern Italy started from the lack of available data after the occurrence of the 24th November 2004, Ml 5.2, Salò earthquake. Since 2006, many efforts have been made by the INGV (Italian National Institute for Geophysic and Vulcanology), Department of Milano-Pavia (hereinafter INGV MI-PV), to improve the strong-motion monitoring of the Northern Italy regions. This activity led to the installation of a strong-motion network composed by 20 accelerometers, 4 coupled with 20-bits Lennartz Mars88 recorders, 12 coupled with 24-bits Reftek 130 recorders and 4 coupled with 24-bits Gaia2 recorders. The network allow us to reduce, in the area under study, the average inter-distances between strong-motion stations from about 40 km (at November 2004) to 15 km. At present the network includes nine 6-channels stations where velocity sensors work together the strong-motion ones. The data transmission is assured by modem-gsm, with the exception of four stations that send data in real time through a TCP/IP protocol. In order to evaluate different site responses, the stations have been installed both in free field and near (or inside) public buildings, located in the center of small villages. From June 2006 to December 2008 a dataset of 94 events with local magnitude range from 0.7 to 5.1 has been collected. An ad hoc data-processing system have been created in order to provide, after each recorded event, engineering parameters such as peak ground acceleration (PGA) and velocity (PGV), response spectra (SA and PSV), Arias and Housner intensities. Data dissemination is achieved through the web site http://rais. mi.ingv.it, while the waveforms are distributed through the Italian strong motion database (http://itaca.mi.ingv.it).
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: open
    Keywords: Strong motion stations ; Seismic networks ; North Italy ; Data acquisition system ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    3
    In:  Computers and Geosciences, Münster, 3, vol. 28, no. 45, pp. 309-326, pp. L11609, (ISBN 0-471-26610-8)
    Publication Date: 2002
    Keywords: Inversion ; Data analysis / ~ processing ; Non-linear effects ; Discrimination ; C&G
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Wiley
    In:  Mathematical Methods for Digital Computers, Volume 1, Sapporo, Japan, Wiley, vol. 17, no. 16, pp. 211-236, (ISBN 0080419208)
    Publication Date: 1967
    Keywords: Inversion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Wiley
    In:  Mathematische Methoden für Digitalrechner, Sapporo, Japan, Wiley, vol. 1, no. 16, pp. 106-126, (ISBN 0080419208)
    Publication Date: 1967
    Keywords: Inversion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...