ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
  • Inversion
  • seismic hazard
  • Seismological Society of America  (15)
  • GFZ Data Services  (5)
  • Wiley  (5)
  • 3
Collection
  • 1
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Earthquake Early Warning and Rapid Response Systems (EEWRRS) should be a viable complement to other disaster risk reduction strategies, particularly in economically developing countries. The „Early Warning and Impact Forecasting“ group (GFZ, section 2.6) is actively involved in the development of novel strategies to develop scientific and technological solutions that may be efficiently applied in countries with limited resources. The proposed solution includes a risk estimation module that extracts from a portfolio of precomputed impact scenarios those matching the characterization of the event detected by an optimized real-time monitoring network. The real-time network integrates both local, on-site components based on low-cost, smart sensor platforms, as well as regional, sparse strong-motion stations. This hybrid solution allows for the optimization of the lead-time and is tailored to the seismotectonic features of the considered region. A prototype EEWRR System is being developed for the Kyrgyz Republic, with the support of the partner CAIAG and in collaboration with the Ministry of Emergency Solutions of the Government of the Kyrygz Republic (MES). Waveform data are available from the GEOFON data centre, under network code AD.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; seismic hazard ; broad band ; velocity ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: 〉1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Building monitoring and decentralized, on-site Earthquake Early Warning system for the Kyrgyz capital Bishkek. Several low cost sensors equipped with MEMS accelerometers have been installed in eleven buildings within the urban area of the city. The different sensing units communicate with each other via wireless links and the seismic data are streamed in real-time to data centres at GFZ and the Central Asian Institute for Applied Geoscience (CAIAG) using internet. Since each sensing unit has its own computing capabilities, software for data processing can be installed to perform decentralised actions. In particular, each sensing unit can perform event detection tasks and run software for on-site early warning. If a description for the vulnerability of the building is uploaded to the sensing unit, this can be exploited to introduce the expected probability of damage in the early-warning protocol customized for a specific structure. Waveform data are available from the GEOFON data centre, under network code KD.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; seismic hazard ; broad band ; velocity ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: 〉1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-12
    Description: Any trustworthy probabilistic seismic hazard analysis (PSHA) has to account for the intrinsic variability of the system (aleatory variability) and the limited knowledge of the system itself (epistemic uncertainty). The most popular framework for this purpose is the logic tree. Notwithstanding its vast popularity, the logic tree outcomes are still interpreted in two different and irreconcilable ways. In one case, practitioners claim that the mean hazard of the logic tree is the hazard and the distribution of all outcomes does not have any probabilistic meaning. On the other hand, other practitioners describe the seismic hazard using the distribution of all logic tree outcomes. In this paper, we explore in detail the reasons of this controversy about the interpretation of logic tree, showing that the distribution of all outcomes is more appropriate to provide a joined full description of aleatory variability and epistemic uncertainty. Then, we provide a more general framework - that we name ensemble modeling - in which the logic tree outcomes can be embedded. In this framework, the logic tree is not a classical probability tree, but it is just a technical tool that samples epistemic uncertainty. Ensemble modeling consists of inferring the parent distribution of the epistemic uncertainty from which this sample is drawn. Ensemble modeling offers some remarkable additional features. First, it allows a rigorous and meaningful validation of any PSHA; this is essential if we want to keep PSHA into a scientific domain. Second, it provides a proper and clear description of the aleatory variability and epistemic uncertainty that can help stakeholders to appreciate the whole range of uncertainties in PSHA. Third, it may help to reduce the computational time when the logic tree becomes computationally intractable because of the too many branches.
    Description: Published
    Description: 2151-2159
    Description: 1SR. TERREMOTI - Servizi e ricerca per la Società
    Description: JCR Journal
    Description: reserved
    Keywords: seismic hazard ; logic tree ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Seismological Society of America
    Publication Date: 2017-04-04
    Description: Mt. Vesuvius is a worldwide known active volcano located in Southern Italy, east of the city of Napoli. Its last eruption occurred in 1944, ending a continuous open-conduit activity that lasted for more than three centuries. After then the volcano entered into a quiescent phase. Nonetheless, the explosive style of its past activity and its proximity to densely populated areas make Mt. Vesuvius one of the most dangerous volcanoes in the world. For this reason, a comprehensive monitoring program was established, with the goal of early detection of any possible signals of unrest.
    Description: Published
    Description: 809-816
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: seismic array ; volcanic seismicity ; array methods ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Seismological Society of America
    Publication Date: 2017-04-04
    Description: In this paper, we discuss in depth, one of the basic procedures that stands behind probabilistic seismic-hazard analysis (PSHA), that is, the declustering of the seismicity rates. First, we explore the technical, scientific, and practical motivations that led to introducing the declustering of seismicity rates. Then, we show that for PSHA, declustering is essential only to minimize a spatial distortion of the earthquake occurrence process, but, conversely, it may lead to significant underestimation of the true seismic hazard. This underestimation precludes the possibility to test meaning- fully PSHA against real observations, and it may lead to underestimate the seismic risk, whenever seismic-hazard maps are used for risk assessment. Finally, we propose a methodology that can be used in PSHA to avoid this potential bias.
    Description: Published
    Description: 1838-1845
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: seismic hazard ; declustering ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: In the present paper, we will describe the field survey (Fig. 1) and the data analysis of an experiment carried out to put constraints on the magnitude detection threshold in the area of Campi Flegrei. Results show that seismic radiation emitted from VT seismic events at frequency lower than 2 Hz has a high detection threshold (minimum magnitude around 1.5). In the range between 2 and 20 Hz, VT events with magnitudes smaller than about 0.5 have a high probability to be undetected. This result indicates that noise reduction through borehole stations and/or small arrays is essential for an accurate seismic monitoring in the Campi Flegrei area.
    Description: Published
    Description: 190-198
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: seismic noise ; magnitude detection ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: Published
    Description: 452-462
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: This paper describes the probabilistic assessment of seismic hazard (PSHA) of Italy in view of the building codes from 2003 to 2009. A code was issued in 2003 as Prime Minister Ordinance, requiring that a PSHA for updating the seismic zoning would be performed in one year, in terms of horizontal peak ground acceleration (PGA) with 10% probability of exceedance in 50 years, on hard ground. For the first time in Italy a working group, established by Istituto Nazionale di Geofisica e Vulcanologia (INGV), adopted a logic-tree approach to model the epistemic uncertainty in: the completeness of the earthquake catalog, the assessment of the seismicity rates and Mmax, and the ground motion prediction equations. The seismic hazard has been computed over a grid of more than 16,000 points for the median value (50th percentile), 84th and 16th percentiles of the 16 branches of the logic tree. Using the same input model, PGA values and spectral accelerations for 10 spectral periods were computed for 9 different probabilities of exceedance in 50 years. This wealth of data made it possible to base the design spectra of a new building code on point hazard data instead of being related to just four zones. The 2009, Mw 6.3 L’Aquila earthquake has led many to attempt to test the reliability of this study. In this paper we analyze suggestions coming from that event and conclude that significant changes to the design spectra are not be recommended based just on evidence from the L’Aquila earthquake.
    Description: Published
    Description: 1885–1911
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: seismic hazard ; italy ; building code ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Historical earthquakes of the Gargano Promontory, an uplifted foreland sector in southeastern Italy, have been usually regarded as generated by inland faults. Some have been associated with activity of the Mattinata Fault, a section of a regional E-W shear zone. The 10 August 1893, Mw 5.4 is one of such earthquakes, but its current onshore location is only loosely based on the damage pattern. Regions that were hit by offshore earthquakes are also known to be affected by a methodological bias such that offshore historical events appear to be located onshore. To test this condition for the 1893 earthquake we pursued an alternative hypothesis for its location. The earthquake occurred near the Gondola Fault Zone, a right-lateral active fault system representing the offshore counterpart of the Mattinata Fault and hence capable of producing sizable earthquakes along the Gargano coast. We focused on its westernmost segment, suggesting that it could be the causative fault of the 1893 earthquake, in agreement with both the damage distribution and reported environmental effects. The approach we present works side by side with the recent developments of the algorithms used to compile historical catalogues, providing a fine-scale, geologically-based method to define or confirm the dubious location of historical earthquakes. Marine Paleoseismology is a new field stemming from the increased capabilities of high-resolution marine techniques in supporting classical paleoseismological analyses for the exploration of the seismogenic potential of offshore faults. Based on Late Pleistocene and Holocene individual or cumulative earthquake records, the potential of offshore faults can now be constrained in terms of expected magnitude and recurrence intervals. We stress the importance of revisiting historical earthquakes in coastal zones using marine paleoseismological data to assess regional seismic hazard, particularly in tectonic settings where regional-size seismogenic areas straddle the onshore and the offshore.
    Description: UF was financially supported by MIUR (Italian Ministry of Education and Research) FIRB Project “AIRPLANE”. This research has also benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile (DPC). Scientific papers funded by DPC do not represent its official opinion and policies. This is ISMAR-Bologna contribution n. 1720.
    Description: Published
    Description: 1-17
    Description: 3.2. Tettonica attiva
    Description: 5.1. TTC - Banche dati e metodi macrosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Adriatic foreland ; Gondola Fault Zone ; macroseismic intensity ; seismic hazard ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Seismological Society of America
    Publication Date: 2017-04-04
    Description: Calculating seismic hazard usually requires input that includes seismicity associated with known faults, historical earthquake catalogs, geodesy, and models of ground shaking. This paper will address the input generally derived from geologic studies that augment the short historical catalog to predict ground shaking at time scales of tens, hundreds, or thousands of years (e.g., SSHAC 1997). A seismogenic source model, terminology we adopt here for a fault source model, includes explicit three-dimensional faults deemed capable of generating ground motions of engineering significance within a specified time frame of interest. In tectonically active regions of the world, such as near plate boundaries, multiple seismic cycles span a few hundred to a few thousand years. In contrast, in less active regions hundreds of kilometers from the nearest plate boundary, seismic cycles generally are thousands to tens of thousands of years long. Therefore, one should include sources having both longer recurrence intervals and possibly older times of most recent rupture in less active regions of the world rather than restricting the model to include only Holocene faults (i.e., those with evidence of large-magnitude earthquakes in the past 11,500 years) as is the practice in tectonically active regions with high deformation rates. During the past 15 years, our institutions independently developed databases to characterize seismogenic sources based on geologic data at a national scale. Our goal here is to compare the content of these two publicly available seismogenic source models compiled for the primary purpose of supporting seismic hazard calculations by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the U.S. Geological Survey (USGS); hereinafter we refer to the two seismogenic source models as INGV and USGS, respectively. This comparison is timely because new initiatives are emerging to characterize seismogenic sources at the continental scale (e.g., SHARE in the Euro- Mediterranean, http://www.share-eu.org/; EMME in the Middle East, http://www.emmegem. org/) and global scale (e.g., GEM, http://www.globalquakemodel.org/; Anonymous 2008). To some extent, each of these efforts is still trying to resolve the level of optimal detail required for this type of compilation. The comparison we provide defines a common standard for consideration by the international community for future regional and global seismogenic source models by identifying the necessary parameters that capture the essence of geological fault data in order to characterize seismogenic sources. In addition, we inform potential users of differences in our usage of common geological/seismological terms to avoid inappropriate use of the data in our models and provide guidance to convert the data from one model to the other (for detailed instructions, see the electronic supplement to this article). Applying our recommendations will permit probabilistic seismic hazard assessment codes to run seamlessly using either seismogenic source input. The USGS and INGV database schema compare well at a first-level inspection. Both databases contain a set of fields representing generalized fault three-dimensional geometry and additional fields that capture the essence of past earthquake occurrences. Nevertheless, there are important differences. When we further analyze supposedly comparable fields, many are defined differently. These differences would cause anomalous results in hazard prediction if one assumes the values are similarly defined. The data, however, can be made fully compatible using simple transformations.
    Description: USGS Senior Scientist In Residence
    Description: Published
    Description: 519-525
    Description: 3.2. Tettonica attiva
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: open
    Keywords: Active fault ; fault source ; database ; seismic hazard ; Italy ; USA ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: In press
    Description: (11)
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Stress can undergo rapid temporal changes in volcanic environments, and this is particularly true during eruptions. We use two independent methods, coda wave interferometry (CWI) and shear wave splitting (SWS) analysis to track stress related wave propagation effects during the waning phase of the 2002 NE fissure eruption at Mt Etna. CWI is used to estimate temporal changes in seismic wave velocity, while SWS is employed to monitor changes in elastic anisotropy. We analyse seismic doublets, detecting temporal changes both in wave velocities and anisotropy, consistent with observed eruptive activity. In particular, syn-eruptive wave propagation changes indicate a depressurization of the system, heralding the termination of the eruption, which occurs three days later.
    Description: Published
    Description: 1779-1788
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Interferometry ; Seismic anisotropy ; Volcano seismology ; Volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-06-21
    Description: Probabilistic seismic hazard analysis is currently the soundest basis for the rational evaluation of ground-motion hazard for site-specific engineering design and assessment purposes. An increasing number of building codes worldwide acknowledge the uniform hazard spectra as the reference to determine design actions on structures and to select input ground motions for seismic structural analysis. This is the case, for example, in Italy where the new seismic code also requires the seismic input for nonlinear dynamic analysis to be selected on the basis of dominating events, for example, identified via disaggregation of seismic hazard. In the present study, the design earthquakes expressed in terms of representative magnitude (M), distance (R), and ε were investigated for a wide region in the southern Apennines, Italy. To this aim, the hazards corresponding to peak ground acceleration and spectral acceleration at 1 sec with a return period of 475 yr were disaggregated. For each of the disaggregation variables the shape of the joint and marginal probability density functions were studied. The first two modes expressed by M, R, and ε were extracted and mapped for the study area. The results shown provide additional information, in terms of source and ground-motion parameters, to be used along with the standard hazard maps to better select the design earthquakes. The analyses also allow us to assess how various frequency ranges of the design spectrum are differently contributed by seismic sources in the study area.
    Description: Published
    Description: 2979–2991
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: seismic hazard ; disaggregation ; Southern Apenniens ; design earthquake ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: IEEE Standard for Local and Metropolitan Area Networks (hereafter IEEE 802.16; online at http://standards.ieee.org/getieee802/802.16.html) is one of the most promising mobile and fixed broadband wireless access technologies for next-generation all-IP networks in the 3.5 GHz band (European spectrum profile). Commonly known as Universal WiMAX (worldwide inter-operability for microwave access), this access technology reaches a high bit rate and covers large areas with a single base station, making it possible to offer connectivity to end users in a cost-effective way. A further useful property of the WiMAX technology is that the transmission can be used both in line-of-sight (LOS) and non-line-of-sight (NLOS) environments, allowing highly feasible communications (WiMAX Forum 2004). Thanks to these features, IEEE 802.16 opens the way to the use of wireless technologies in the environmental monitoring of areas such as seismic and volcanic zones.
    Description: European Community’s Sixth Framework Programme, Contract no. IST-034622-IP
    Description: Published
    Description: 411-419
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: WiMAX ; volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The Iquique Local Network (ILN), a temporal network of broadband and short period seismic stations has been operating in Northern Chile since 2009. The aim of this installation was to locally densify the permanent seismic installation of the Integrated Plate Boundary Observatory in Chile (IPOC), with the main goal to decrease the magnitude of detected earthquake, to improve the hypocentral location accuracy, to allow a more accurate investigation of seismic source parameters, and to analyse proposed seismogenic structures of the Northern Chile seismic gap. The network setup evolved with time, with different geometries at different installation phases, aiming to study different seismicity features. In the first phase, started in 2009 and operational since 2010 until autumn 2013, the network had a sparse configuration, targeting a broad region extending from 19.5° S in the North to approximately 21.3° S South of Iquique. In the following stage, operational until fall 2017, most broadband stations were rearranged into a small aperture seismic array (PicArray) close to the village of Pica, to monitor with array techniques the shallow seismicity at the plate interfacer, intermediate and deep focus seismicity. Waveform data are available from the GEOFON data centre, under network code IQ, and arefully open.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; seismic hazard ; broad band ; velocity ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: We have implemented a method based on an unsupervised neural network to cluster the waveforms of very-long-period (VLP) events associated with explosive activity at the Stromboli volcano (southern Italy). Stromboli has several active vents in the summit area producing together more than 200 explosions=day. We applied this method to investigate the relationship between each vent and its associated VLP explosive waveform. We selected 147 VLP events recorded between November and December 2005, when digital infrared camera recordings were available. From a visual inspection of the infrared camera images, we classified the VLPs on the basis of which vent produced each explosion. We then applied the self-organizing map (SOM), an unsupervised neural technique widely applied in data exploratory analysis, to cluster the VLPs on the basis of their waveform similarity. Our analysis demonstrates that the most recurrent VLP waveforms are usually generated by the same vent. Some exceptions occurred, however, in which different waveforms are associated with the same vent, as well as different vents generating similar waveforms. This suggests that the geometry of the upper conduit-vent system plays a role in shaping the recurring VLP events, whereas occasional modest changes in the source process dynamics produce the observed exceptions.
    Description: Published
    Description: 2449–2459
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Maps ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Seismological Society of America
    Publication Date: 2017-04-04
    Description: In 2004, on behalf of the Department of Civil Protection (DPC—Dipartimento della Protezione Civile), the Istituto Nazionale di Geofisica e Vulcanologia (INGV) released a new Italian seismic hazard map. The entire scientific process was public and transparent: an international panel of experts conducted a peer review while the work was in progress, and all the input data, the final output, and the technical documentation was published. The details of the entire process are available on a dedicated Web site (http://zonesismiche.mi.ingv.it). Following the publication of the reference map, the DPC financed the S1 project to produce a set of additional elaborations that would better describe the Italian seismic hazard. This resulted in a set of maps expressed in terms of PGA and Sa (spectral accelerations), both evaluated for different probabilities of exceedance. Finally, the overall information, more than a “set of maps,” can be considered the realization of what can be defined as a complete seismic hazard model. One of the aims of the S1 project is the dissemination of the data through the Web (http://esse1.mi.ingv.it). To evaluate the state of the art in disseminating this type of data we conducted an overview of the Web sites of earthquake-prone countries,and in several cases we experienced difficulties and slowness in finding seismic hazard information for a specific area. Our goal was to provide a tool with a combined high level of interactivity and ease of use. Recognizing the need for a Web application that would enable users to intuitively and interactively locate the area of interest and show pertinent data in various formats, we decided to develop a dedicated Web interface.
    Description: Published
    Description: 68-78
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 5.4. TTC - Sistema Informativo Territoriale
    Description: 5.9. TTC - Sistema web
    Description: JCR Journal
    Description: reserved
    Keywords: WebGIS ; italy ; seismic hazard ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: The Colfiorito Basin is a small intramountain depression in the southern section of the Northern Apennine chain that is filled with Quaternary alluvial deposits. The presence of soft alluvial deposits has significantly influenced the level of local damage that was caused by two major earthquakes (ML 5.6 and 5.8) belonging to the swarm that started in September 1997. To verify the effects of the basin structure on the predominant frequency of seismic motion, ambient noise measurements were carried out in the Colfiorito Basin during two experiments in May and July of 2002. The horizontal-to-vertical spectral ratios (HVSRs) were calculated for data collected at four profiles in the basin. Array techniques were applied to determine the wave types that composed the noise, to estimate their apparent velocity and azimuth of propagation, and to calculate a velocity-dispersion curve from which a velocity-depth structure was derived. The data analysis shows a high amplification in the HVSR at low frequency. This feature is common to most of the sites, including the reference site, and it is interpreted as being due to weather disturbances. The peak frequencies of the spectral ratio calculated at the sites located in the center of the basin coincide with the theoretically estimated resonance frequencies. The arrayaveraged HVSR calculated for the array located in the middle of the plain has a pronounced peak at 0.9 Hz. This corresponds to the peak of the amplification function calculated on the basis of the velocity model deduced from the dispersion analysis. The HVSR method is instead unsuitable for the prediction of the resonance frequencies of sediments in the sites where strong lateral variations of basement topography are present. We measured apparent velocities in the range of 0.3–0.8 km/sec by applying f-k methods to array recordings. These values are compatible with the predominance of surface waves in the noise, as also confirmed by polarization analysis. Both Rayleigh and Love waves are present in the background seismic noise. The results obtained by applying the spatial autocorrelation method to the vertical component of the ground motion recorded at a 240-m-wide circular array deployed in the middle of the basin revealed the presence of Rayleigh waves, and f-k methods combined with polarization techniques revealed the presence of polarized Love waves. The wave-field analysis indicates two main propagation directions: the first is around N100 E in the frequency band of 1.0–2.0 Hz; this radiation can be interpreted as being generated at the east-southeast step borders of the basin. The second main direction is around N300 E in the frequency band of 2.0–3.0 Hz; its source may be a 180-m-deep depression located at the southwest corner of the basin.
    Description: Published
    Description: 490–505
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 556544 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: We investigate the complex propagation of seismic waves beneath the Campi Flegrei caldera, Italy, using multichannel recordings of artificial explosions. The sources consisted of air gun explosions shot in the Gulf of Pozzuoli at offsets ranging between 3 and 7 km. A multichannel recording device was deployed in the Solfatara crater and consisted of ten vertical-component and two three-component short-period seismometers with a maximum aperture of about 150 m. The zero-lag correlation (ZLC) technique was adopted to estimate horizontal slowness and backazimuth of coherent waves crossing the array. For sources located in the northern sector of the Gulf, with maximum offset 5 km, ray parameters and backazimuths are in agreement with those predicted for the 1D velocity model used for routine locations. For sources at offsets larger than approximately 5 km, the ZLC curves depict prominent maxima associated with a secondary phase propagating with a lower velocity than the first-arrival P wave. Using finite-difference synthetic seismograms generated for a 2D realistic velocity model, we explain these late arrivals in terms of a lateral velocity variation located at depths of about 1 km. Such discontinuity would correspond to a positive V (sub p) anomaly imaged by a recent 3D tomographic study, and interpreted as the submerged southern rim of Campi Flegrei caldera collapsed during the explosive eruption of 12 ky B.P. The small spacing among adjacent shot points allowed simultaneous wave-field decomposition at the source and receiver arrays. Using a modified version of the double-beam method, we retrieve the independent variation of horizontal slowness at both the source and receiver regions. For both cases, we found azimuthal deviations as large as 50 degrees with respect to the great circle path. At the source region, these discrepancies may be interpreted in terms of ray bending at the interface of the aforementioned positive anomaly. At the receiver array, the observed anomalies may be attributed to either velocity variations marking the Solfatara crater rim, or to a near-receiver, low-velocity body whose position would coincide with negative gravimetric anomalies and a high V (sub p) /V (sub s) ratio region inferred by independent geophysical and seismological studies.
    Description: Published
    Description: 440-456
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: tomography ; campi flegrei ; wavefield modeling ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: The properties of the tremor wave field at Stromboli are analyzed using data from small-aperture arrays of short-period seismometers deployed on the north flank of the volcano. The seismometers are configured in two semi-circular arrays with radii of 60 and 150 m and a linear array with length of 600 m. The data are analyzed using a spatiotemporal correlation technique specifically designed for the study of the stationary stochastic wave field of Rayleigh and Love waves generated by volcanic activity and by scattering sources distributed within the island. The correlation coefficients derived as a function of frequency for the three components of motion clearly define the dispersion characteristics for both Rayleigh and Love waves. Love and Rayleigh waves contribute 70% and 30%, respectively, of the surface-wave power. The phase velocities of Rayleigh waves range from 1000 m/sec at 2 Hz to 350 m/sec at 9 Hz, and those for Love waves range from 800 to 400 m/sec over the same frequency band. These velocities are similar to those measured near Puu Oo on the east rift of Kilauea Volcano, Hawaii, although the dispersion characteristics of Rayleigh waves at Stromboli show a stronger dependence on frequency. Such low velocities are consistent with values expected for densely cracked solidified basalt. The dispersion curves are inverted for a velocity model beneath the arrays, assuming those dispersions represent the fundamental modes of Rayleigh and Love waves.
    Description: Published
    Description: 653-666
    Description: reserved
    Keywords: volcanic tremor ; array ; velocity structure ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2836423 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: In this article we report on the implementation of an automatic system for discriminating landslide seismic signals on Stromboli island (southern Italy). This is a critical point for monitoring the evolution of this volcanic island, where at the end of 2002 a violent tsunami occurred, triggered by a big landslide. We have devised a supervised neural system to discriminate among landslide, explosion-quake, and volcanic microtremor signals. We first preprocess the data using a compact representation of the seismic records. Both spectral features and amplitude-versus-time information have been extracted from the data to characterize the different types of events. As a second step, we have set up a supervised classification system, trained using a subset of data (the training set) and tested on another data set (the test set) not used during the training stage. The automatic system that we have realized is able to correctly classify 99% of the events in the test set for both explosion-quake/ landslide and explosion-quake/microtremor couples of classes, 96% for landslide/ microtremor discrimination, and 97% for three-class discrimination (landslides/ explosion-quakes/microtremor). Finally, to determine the intrinsic structure of the data and to test the efficiency of our parameterization strategy, we have analyzed the preprocessed data using an unsupervised neural method. We apply this method to the entire dataset composed of landslide, microtremor, and explosion-quake signals. The unsupervised method is able to distinguish three clusters corresponding to the three classes of signals classified by the analysts, demonstrating that the parameterization technique characterizes the different classes of data appropriately.
    Description: Published
    Description: 1230-1240
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 850226 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    3
    In:  Computers and Geosciences, Münster, 3, vol. 28, no. 45, pp. 309-326, pp. L11609, (ISBN 0-471-26610-8)
    Publication Date: 2002
    Keywords: Inversion ; Data analysis / ~ processing ; Non-linear effects ; Discrimination ; C&G
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The Institute of Seismology, University of Helsinki (ISUH) was founded in 1961 as a response to the growing public concern for environmental hazards caused by nuclear weapon testing. Since then ISUH has been responsible for seismic monitoring in Finland. The current mandate covers government regulator duties in seismic hazard mitigation and nuclear test ban treaty verification, observatory activities and operation of the Finnish National Seismic Network (FNSN) as well as research and teaching of seismology at the University of Helsinki.The first seismograph station of Finland was installed at the premises of the Department of Physics, University of Helsinki in 1924. However, the mechanical Mainka seismographs had low magnification and thus the recordings were of little practical value for the study of local seismicity. The first short-period seismographs were set up between 1956 and 1963. The next significant upgrade of FNSN occurred during the late 1970’s when digital tripartite arrays in southern and central Finland became fully operational, allowing for systematic use of instrumental detection, location and magnitude determination methods. By the end of the 1990’s, the entire network was operating using digital telemetric or dial-up methods. The FNSN has expanded significantly during the 21st Century. It comprises now 36 permanent stations. Most of the stations have Streckeisen STS-2, Nanometrics Trillium (Compact/P/PA/QA) or Guralp CMG-3T broad band sensors. Some Teledyne-Geotech S13/GS13 short period sensors are also in use. Data acquisition systems are a combination of Earth Data PS6-24 digitizers and PC with Seiscomp/Seedlink software or Nanometrics Centaurs. The stations are connected to the ISUH with Seedlink via Internet and provide continuous waveform data at 40 Hz (array) or 100-250 Hz sampling frequency. Further information about instrumentation can be found at the Institute’s web site (www.seismo.helsinki.fi). Waveform data are available from the GEOFON data centre, under network code HE, and arefully open.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; induced ; seismic hazard ; broad band ; velocity ; acceleration ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2023-05-12
    Description: Abstract
    Description: Sodankylä geophysical observatory (SGO) has operated in Sodankylä in northern Finland since 1913. SGO was originally founded by the Finnish Academy of Science and Letters. Now it takes care of national and international duties studying the space and geoenvironment as an independent research organisation in the University of Oulu. SGO performs long-term measurements, builds instruments, innovates and maintains domestic and international measurements, and performs research from these measurements. The seismic observations at SGO started in Sodankylä 1956. In 2005-2006 SGO seismic stations were updated to broadband instrumentation and connected to GEOFON data center. Today, the number of seismic stations has increased to 9. The stations have Streckeisen STS-2 or Nanometrics Trillium PA/PH broadband sensors. 3 of the stations are so called Posthole stations located in borehole 7-20 m below surface. The rest of the stations are located on the surface or in a more traditional type of vault. Data acquisition systems are either Earth Data PS6-24 digitisers and PC with Seiscomp or Nanometrics Centaurs. The continuous wave form data is collected at 100 Hz sampling frequency. The VH, LH and BH channel data is available from GEOFON data center and the 100Hz HH data from SGO by request. Further information about instrumentation can be found at the Institute’s web site (https://www.sgo.fi/). Waveform data are available from the GEOFON data centre, under network code FN, and arefully open.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; induced ; seismic hazard ; broad band ; velocity ; acceleration ; displacement ; Broadband seismic waveforms ; Seismic monitoring ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Wiley
    In:  Mathematical Methods for Digital Computers, Volume 1, Sapporo, Japan, Wiley, vol. 17, no. 16, pp. 211-236, (ISBN 0080419208)
    Publication Date: 1967
    Keywords: Inversion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Wiley
    In:  Mathematische Methoden für Digitalrechner, Sapporo, Japan, Wiley, vol. 1, no. 16, pp. 106-126, (ISBN 0080419208)
    Publication Date: 1967
    Keywords: Inversion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...