ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
  • Elsevier Science Limited  (5)
  • Elsevier Ltd.  (2)
  • American Institute of Physics  (1)
  • EDP Sciences  (1)
  • Versita  (1)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2022-02-16
    Description: This paper considers a dataset of ionograms recorded by the CADI ionosonde installed at Sao José dos Campos (SJC; 23.2°S, 45.9°W, magnetic latitude 14.1°S), Brazil, to compare two autoscaling systems: Autoscala, developed by the Istituto Nazionale di Geofisica e Vulcanologia, and the UDIDA-scaling, developed by the Universidade do Vale do Paraı´ba. The analysis, focused on the critical frequency of the F2 layer, foF2, shows that the two systems work differently. The UDIDA-scaling gives always a value of foF2 as output, regardless of the presence of the ionogram trace and its definition, while Autoscala tends to reject ionograms for which the digital information is considered insufficient. As a consequence, the UDIDA-scaling can autoscale more foF2 values than Autoscala, but Autoscala can discard a larger number of ionograms for which the trace is unidentifiable. Discussions are made on the accuracy of the foF2 values given as output, as well as on the main shortcomings characterizing the two systems.
    Description: Published
    Description: 173–187
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Description: open
    Keywords: Ionogram ; Ionosonde ; Low-latitude ionosphere ; Critical frequency foF2 ; Automatic scaling ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-02
    Description: Spectral analyses are employed to investigate how the diurnal periodicity of the critical frequency of the sporadic E (Es) layer varies with solar activity. The study is based on ionograms recorded at the ionospheric station of Rome (41.8°N, 12.5°E), Italy, from 1976 to 2009, a period of time covering three solar cycles. It was confirmed that the diurnal periodicity is always affected by an amplitude modulation with periods of several days, which is the proof that Es layers are affected indirectly by planetary waves through their non linear interaction with atmospheric tides at lower altitudes. The most striking features coming out from this study is however that this amplitude modulation is greater for high-solar activity than for low-solar activity.
    Description: Published
    Description: 29-35
    Description: 2A. Fisica dell'alta atmosfera
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: open
    Keywords: Sporadic E layer ; Mid-latitude ionosphere ; Tidal and Planetary wave ; Nonlinear interaction ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-14
    Description: During the International Polar Year (IPY), one area of great interest is co-coordinated, multi-instrument probing of the ionosphere at high latitudes. This region is important not only for the applications that rely upon our understanding of it, but also because it contains the footprints of processes that have their origin in the interplanetary space. Many different techniques are now available for probing the ionosphere, from radar measurements to the analysis of very low frequency (VLF) wavepaths. Combining these methods provides the ability to study the ionosphere from high in the F-region to the bottom of the D-layer. Thus, coupling processes from the magnetosphere and to the neutral atmosphere can be considered. An additional dimension is through comparisons of the response of the two polar ionospheres to similar (or the same) geomagnetic activity. With more instruments available at the South Pole inter-hemispheric, studies have become easier to accomplish such that a fuller picture of the global response to Sun–Earth coupling can be painted. This paper presents a review of the current state of knowledge in ionospheric probing. It cannot provide a comprehensive guide of the work to date due to the scale of the topic.Rather it is intended to give an overview of the techniques and recent results from some of the instruments and facilities that are a part of the IPY cluster 63—Heliosphere Impact on Geospace. In this way it is hoped that the reader will gain a flavor of the recent research performed in this area and the potential for continuing collaboration and capabilities during the IPY (2007–2009).
    Description: Published
    Description: 2293-2308
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: reserved
    Keywords: Polar ionosphere ; International polar year ; Conjugacy ; Interhemispheric studies ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-24
    Description: In this paper we analyze the behaviour of the critical frequency of the F2 region of the ionosphere(foF2)and the height of the maximum density of free electrons in F2 region(hmF2)overTucumán(26.91S,294.61E), during the deep solar minimum occurred in 2008–2009. Data used were compared with those obtained at solar minimum observed in 1975–1976. In addition, we check the validity of theI nternational Reference Ionosphere model(IRI), in the version 2012, to predict the maximum free electron density in the ionosphere(NmF2)above the mentioned station, for very low solar activity. The results show that: (a) Ionization was lowest for recent solar minimum.(b)The semmianual anomaly which are present in the behaviour of foF2 at times of increased solar activity, was not clearly observed during the period 2008–2009. This phenomenon could be related with the very low solar activity for that period, confirming the relationship of the amplitude of this anomaly with the solar activity reported by other authors.(c)In most cases, the values of hmF2 recorded in the deep solar minimum are lower than those observed in the period 1975–1976, suggesting a decrease in the height of the ionosphere in the course of time, which could be related to the greenhouse effect in the atmosphere and the anomalously low solar extreme-ultraviolet irradiance.(d)IRI predictions show significant deviations from the experimental values, indicating the need for improvements in the model.
    Description: Published
    Description: 89-98
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Description: restricted
    Keywords: F2 region ; solar minimum ; IRI 2012 ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: COST (Co-operation in the field of Scientific and Technical Research) is an important instrument supporting co-operation among scientists and researchers across Europe now joining 35 member countries. Scientific projects in the COST framework are called COST Actions and have the objectives embodied in their respective Memorandum of Understanding (MoU). The main objectives of the COST Actions within the European ionospheric and radio propagation community have been: to study the influence of upper atmospheric conditions on terrestrial and Earthspace communications, to develop methods and techniques to improve existing and generate new ionospheric and propagation models over Europe for telecommunication and navigation applications and to transfer the results to the appropriate national and international organizations, institutions and industry dealing with the modern communication systems. This paper summarises in brief the background and historical context of four ionospheric COST Actions and outlines their main objectives and results. In addition, the paper discusses the dissemination of the results and the collaboration among the participating institutions and researchers.
    Description: DRS Codem Systems Ball Aerospace Corporation University of Massachusetts Lowell
    Description: Published
    Description: Lowell, Massachusetts, U.S.A., April 29, 2007
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: open
    Keywords: Physics of the Ionosphere ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Particularly intense events occurred on the Sun in a period around minimum of solar activity during cycle 23. We investigated the characteristics of September 2005 and December 2006 events and the properties of the correlated observations of ionospheric absorption, obtained by a 30 MHz riometer installed at Mario Zucchelli Station (MZS-Antarctica), and of geomagnetic activity recorded at Scott Base (Antarctica). Solar events are studied using the characteristics of CMEs measured with SoHO/LASCO coronagraphs and the temporal evolution of solar energetic protons in different energy ranges measured by GOES 11 spacecraft. Analysing these data, we have determined how these effects are finally observed on the Earth’s surface not only in the ionospheric absorption of radio waves and in the intense geomagnetic activity, but also as significant variations of cosmic ray modulation, even at high energies.
    Description: Published
    Description: 1660-1668
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: reserved
    Keywords: Polar ionosphere ; Solar proton event ; Solar radiation ; Coronal mass ejection ; Geomagnetic storm ; Cosmic ray ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: This paper presents research on polar cap ionosphere space weather phenomena conducted during the European Cooperation in Science and Technology (COST) action ES0803 from 2008 to 2012. The main part of the work has been directed toward the study of plasma instabilities and scintillations in association with cusp flow channels and polar cap electron density structures/patches, which is considered as critical knowledge in order to develop forecast models for scintillations in the polar cap. We have approached this problem by multi-instrument techniques that comprise the EISCAT Svalbard Radar, SuperDARN radars, in-situ rocket, and GPS scintillation measurements. The Discussion section aims to unify the bits and pieces of highly specialized information from several papers into a generalized picture. The cusp ionosphere appears as a hot region in GPS scintillation climatology maps. Our results are consistent with the existing view that scintillations in the cusp and the polar cap ionosphere are mainly due to multi-scale structures generated by instability processes associated with the cross-polar transport of polar cap patches. We have demonstrated that the SuperDARN convection model can be used to track these patches backward and forward in time. Hence, once a patch has been detected in the cusp inflow region, SuperDARN can be used to forecast its destination in the future. However, the high-density gradient of polar cap patches is not the only prerequisite for high-latitude scintillations. Unprecedented highresolution rocket measurements reveal that the cusp ionosphere is associated with filamentary precipitation giving rise to kilometer scale gradients onto which the gradient drift instability can operate very efficiently. Cusp ionosphere scintillations also occur during IMF BZ north conditions, which further substantiates that particle precipitation can play a key role to initialize plasma structuring. Furthermore, the cusp is associated with flow channels and strong flow shears, and we have demonstrated that the Kelvin- Helmholtz instability process may be efficiently driven by reversed flow events.
    Description: Published
    Description: A02
    Description: JCR Journal
    Description: open
    Keywords: ionosphere ; polar cap ; instabilities ; irregularities ; cusp-cleft ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: This paper is focused on unusual nighttime impulsive electron density enhancements that are rarely observed at low latitudes on a wide region of South America, under quiet and medium/high geomagnetic conditions. The phenomenon under investigation is very peculiar because besides being of brief duration, it is characterized by a pronounced compression of the ionosphere. The phenomenon was studied and analyzed using both the F2 layer critical frequency (foF2) and the virtual height of the base of the F region (h'F) values recorded at five ionospheric stations widely distributed in space, namely: Jicamarca (-12.0°, -76.8°, magnetic latitude -2.0°), Peru; Sao Luis (-2.6°, -44.2°, magnetic latitude +6.2°), Cachoeira Paulista (-22.4°, -44.6°, magnetic latitude -13.4°), and Sao Jose´ dos Campos (-23.2°, -45.9°, magnetic latitude -14.1°), Brazil; Tucumán (-26.9°, -65.4°, magnetic latitude -16.8°), Argentina. In a more restricted region over Tucumán, the phenomenon was also investigated by the total electron content (TEC) maps computed by using measurements from 12 GPS receivers. A detailed analysis of isoheight ionosonde plots suggests that traveling ionospheric disturbances (TIDs) caused by gravity wave (GW) propagation could play a significant role in causing the phenomenon both for quiet and for medium/high geomagnetic activity; in the latter case however a recharging of the fountain effect, due to electric fields penetrating from the magnetosphere, joins the TID propagation and plays an as much significant role in causing impulsive electron density enhancements.
    Description: Published
    Description: 369-384
    Description: 2A. Fisica dell'alta atmosfera
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: restricted
    Keywords: Equatorial ionosphere ; Electron density enhancement ; Traveling ionospheric disturbance ; Fountain effect ; TEC ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.03. Magnetosphere::01.03.02. Magnetic storms ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: When applying the ray tracing in ionospheric propagation, the electron density modelling is the main input of the algorithm, since phase refractive index strongly depends on it. Also the magnetic field and frequency collision modelling have their importance, the former as responsible for the azimuth angle deviation of the vertical plane containing the radio wave, the latter for the evaluation of the absorption of the wave. Anyway, the electron density distribution is strongly dominant when one wants to evaluate the group delay time characterizing the ionospheric propagation. From the group delay time, azimuth and elevation angles it is possible to determine the point of arrival of the radio wave when it reaches the Earth surface. Moreover, the procedure to establish the target (T) position is one of the essential steps in the Over The Horizon Radar (OTHR) techniques which require the correct knowledge of the electron density distribution. The group delay time generally gives rough information of the ground range, which depends on the exact path of the radio wave in the ionosphere. This paper focuses on the lead role that is played by the variation of the electron density grid into the ray tracing algorithm, which is correlated to the change of the electron content along the ionospheric ray path, for obtaining a ray tracing as much reliable as possible. In many cases of practical interest, the group delay time depends on the geometric length and the electron content of the ray path. The issue is faced theoretically, and a simple analytical relation, between the variation of the electron content along the path and the difference in time between the group delays, calculated and measured, both in the ionosphere and in the vacuum, is obtained and discussed. An example of how an oblique radio link can be improved by varying the electron density grid is also shown and discussed.
    Description: Published
    Description: 1630-1639
    Description: 2A. Fisica dell'alta atmosfera
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: partially_open
    Keywords: Ionospheric ray tracing ; Electron density model ; Ray path correction ; Electron content ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Analyses of the dependence of the F2 layer critical frequency, foF2, on five widely used solar activity indices (F10.7, Lym–α, MgII, R and EUV0.1–50) are carried out considering noon values manually validated at the ionospheric station of Rome (41.8°N, 12.5°E, Italy) between January 1976 and December 2013, a period of time covering the last three solar cycles and including the prolonged and anomalous minimum of solar cycle 23/24 (years 2008–2009). After applying a 1–year running mean to both foF2 and solar activity indices time series, a second order polynomial fitting proves to perform better than a linear one, and this is specifically due to the very low solar activity of the last solar minimum and to the remaining saturation effect characterizing the high solar activity. A comparison between observed and synthetic foF2 values, the latter calculated by using the analytical relations found for every index, and some considerations made on the R parameter introduced by Solomon et al. (2013), suggest that MgII is the best index to describe the dependence of foF2 on the solar activity. Three main reasons justify this result: (1) the good sensibility of MgII to the variations of foF2 for low solar activity; (2) the reduced saturation effect characterizing MgII at high solar activity; (3) the poor influence of the hysteresis effect characterizing MgII at medium solar activity. On the other hand, the F10.7 index, widely used as input parameter for numerous ionospheric models, does not represent properly the last minimum; specifically, it is not able to describe the variations of foF2 under a solar activity level of F10.7 = 82•10–22 [J Hz–1 s–1 m–2].
    Description: Published
    Description: 13-21
    Description: 2A. Fisica dell'alta atmosfera
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: open
    Keywords: Mid-latitude ionosphere ; Solar minimum cycle 23/24 ; Solar indices ; foF2 modeling ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.03. Forecasts ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...