ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring  (8)
  • 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
  • ECOWAR
  • AGU  (13)
  • American Institute of Physics  (2)
  • Versita  (2)
Collection
Years
  • 1
    Publication Date: 2022-02-16
    Description: This paper considers a dataset of ionograms recorded by the CADI ionosonde installed at Sao José dos Campos (SJC; 23.2°S, 45.9°W, magnetic latitude 14.1°S), Brazil, to compare two autoscaling systems: Autoscala, developed by the Istituto Nazionale di Geofisica e Vulcanologia, and the UDIDA-scaling, developed by the Universidade do Vale do Paraı´ba. The analysis, focused on the critical frequency of the F2 layer, foF2, shows that the two systems work differently. The UDIDA-scaling gives always a value of foF2 as output, regardless of the presence of the ionogram trace and its definition, while Autoscala tends to reject ionograms for which the digital information is considered insufficient. As a consequence, the UDIDA-scaling can autoscale more foF2 values than Autoscala, but Autoscala can discard a larger number of ionograms for which the trace is unidentifiable. Discussions are made on the accuracy of the foF2 values given as output, as well as on the main shortcomings characterizing the two systems.
    Description: Published
    Description: 173–187
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Description: open
    Keywords: Ionogram ; Ionosonde ; Low-latitude ionosphere ; Critical frequency foF2 ; Automatic scaling ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-27
    Description: The Sciara del Fuoco (SdF) landslides that occurred at the end of December 2002 prompted researchers to install geodetic networks to monitor deformations related to potential new slope failures. With this aim, an integrated multiparametric monitoring system was designed and deployed. In particular, this complex monitoring system is composed of four single systems: an electronic distance measurement network, installed immediately after the landslide events, a realtime GPS network, a ground-based interferometric linear synthetic aperture radar (GB-InSAR), and an automated topographic monitoring system (named Theodolite Robotic Observatory of Stromboli, or THEODOROS); the three last systems provided a continuous monitoring of selected points or sectors of the SdF. Data acquired from different systems have been jointly analyzed to reach a better understanding of the SdF dynamics. Displacement data obtained from the topographic systems are compared with those obtained from GB-InSAR, and the results of the comparison are analyzed and discussed. Furthermore, in this chapter, an example of a warning system that can detect slope instability precursors on the SdF based on a statistical analysis of the data collected by the THEODOROS system is reported.
    Description: Published
    Description: 183-199
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: reserved
    Keywords: Flank instability ; Slope failure ; Terrestrial geodesy ; Ground Based InSAR ; Continuous GPS ; Landslide monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-14
    Description: In this study we present an intercomparison of measurements of very low water vapor column content obtained with a Ground-Based Millimeter-wave Spectrometer (GBMS), Vaisala RS92k radiosondes, a Raman Lidar, and an IR Fourier Transform Spectrometer. These sets of measurements were carried out during the primary field campaign of the ECOWAR (Earth COoling by WAter vapor Radiation) project which took place on the Western Italian Alps from 3 to 16 March, 2007.
    Description: Published
    Description: 135-138
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: N/A or not JCR
    Description: open
    Keywords: Precipitable Water Vapor ; ECOWAR ; IR and Millimeter-Wave Spectroscopy ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-14
    Description: An unusual nighttime impulsive electron density enhancement was observed on 6 March 2010 over a wide region of South America, below the southern crest of the equatorial anomaly, under low solar activity and quiet geomagnetic conditions. The phenomenon was observed almost simultaneously by the F2 layer critical frequency ( foF2) recorded at three ionospheric stations which are widely distributed in space, namely Cachoeira Paulista (22.4°S, 44.6°W, magnetic latitude 13.4°S), São José dos Campos (23.2°S, 45.9°W, magnetic latitude 14.1°S), Brazil, and Tucumán (26.9°S, 65.4°W, magnetic latitude 16.8°S), Argentina. Although in a more restricted region over Tucumán, the phenomenon was also observed by the total electron content (TEC) maps computed by usingmeasurements from 12 GPS receivers. The investigated phenomenon is very particular because besides being of brief duration, it is characterized by a pronounced compression of the ionosphere. This compression was clearly visible both by the virtual height of the base of the F region (h′F) recorded at the aforementioned ionospheric stations, and by both the vertical electron density profiles and the slab thickness computed over Tucumán. Consequently, neither an enhanced fountain effect nor plasma diffusion from the plasmasphere can be considered as the single cause of this unusual event. A thorough analysis of isoheight and isofrequency ionosonde plots suggest that traveling ionospheric disturbances (TIDs) caused by gravity wave (GW) propagation could have likely played a significant role in causing the phenomenon.
    Description: Published
    Description: A12314
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: 5.4. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: JCR Journal
    Description: open
    Keywords: equatorial ionosphere ; travelling ionospheric disturbance ; ionosphere-atmosphere interactions ; instrument and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-03
    Description: A model is developed of the gradient drift instability growth rate in the north polar cap ionosphere, utilizing a novel approach employing an ionospheric imaging algorithm. The growth rate values calculated by this model are in turn used to estimate how the amplitudes of actual gradient drift waves vary over time as the plasma drifts and the growth rates change with time. Ionospheric imaging is again used in order to determine plasma drift velocities. The final output from the model is in turn used to assess the linear correlation between the scintillation indices S4 and σØ recorded by several GPS L1 band scintillation receivers stationed in the north polar cap and mean gradient drift wave amplitudes. Four separate magnetic storm periods, totaling 13 days, are analyzed in this way. The results show weak but significant linear correlations between the mean wave amplitudes calculated and the observed scintillation indices at F layer altitudes.
    Description: Published
    Description: A07309
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: reserved
    Keywords: scintillations ; polar ionosphere ; gradient drift ; instability ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: COST (Co-operation in the field of Scientific and Technical Research) is an important instrument supporting co-operation among scientists and researchers across Europe now joining 35 member countries. Scientific projects in the COST framework are called COST Actions and have the objectives embodied in their respective Memorandum of Understanding (MoU). The main objectives of the COST Actions within the European ionospheric and radio propagation community have been: to study the influence of upper atmospheric conditions on terrestrial and Earthspace communications, to develop methods and techniques to improve existing and generate new ionospheric and propagation models over Europe for telecommunication and navigation applications and to transfer the results to the appropriate national and international organizations, institutions and industry dealing with the modern communication systems. This paper summarises in brief the background and historical context of four ionospheric COST Actions and outlines their main objectives and results. In addition, the paper discusses the dissemination of the results and the collaboration among the participating institutions and researchers.
    Description: DRS Codem Systems Ball Aerospace Corporation University of Massachusetts Lowell
    Description: Published
    Description: Lowell, Massachusetts, U.S.A., April 29, 2007
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: open
    Keywords: Physics of the Ionosphere ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: A model is presented of the growth rate of turbulently generated irregularities in the electron concentration of northern polar cap plasma patches. The turbulence is generated by the short-term fluctuations in the electric field imposed on the polar-cap ionosphere by electric field mapping from the magnetosphere. The model uses an ionospheric imaging algorithm to specify the state of the ionosphere, throughout. The growth rates are used to estimate mean amplitudes for the irregularities and these mean amplitudes are compared with observations of the scintillation indices, S4 and бø, by calculating the linear correlation co-efficients between them. The scintillation data are recorded by GPS L1 band receivers stationed at high northern latitudes. A total of 13 days are analysed, covering four separate magnetic storm periods. These results are compared with those from a similar model of the Gradient Drift Instability (GDI) growth rate. Over-all, the results show better correlation between the GDI process and the scintillation indices than for the turbulence process and the scintillation indices. Two storms, however, show approximately equally good correlations for both processes, indicating that there might be times when the turbulence process of irregularity formation on plasma patches may be the controlling one.
    Description: In press
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: polar cap patches ; turbulence ; scintillations ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: High spatial resolution hyperspectral measurements of volcanic thermal anomalies allow for an unconstrained solution of a two-component thermal model. This can be used for identification of lava flow emplacement style and the calculation of lava flow heat and volume flux. The multispectral infrared and visible imaging spectrometer (MIVIS) is an airborne sensor equipped with 72 bands in the short infrared range and 10 bands in the thermal infrared region of the spectrum. We used MIVIS acquired for Mount Etna (Italy) during the July–August 2001 eruption to solve the dual band equations in an unconstrained fashion using three bands of unsaturated data. Our results suggest a complex thermal structure for Etnean lava flows. This is characterized by a downflow transition from a lightly crusted active channel to a more heavily crusted distal section, both surrounded by zones of stagnant cooling flow where exposed molten material is absent and maximum temperatures are thus lower. The total flow field effusion rate obtained for 29 July 2001 (0700 local time) of 8–16 m3/s is in excellent agreement with that obtained from ground-based measurements and Advanced Very High Resolution Radiometer data. Flow-by-flow effusion rates obtained from the MIVIS data vary depending on whether the vent is linked to the central conduit or the dyke that was injected from greater depth, as well as vent elevation, with lower elevation vents experiencing higher effusion rates.
    Description: Published
    Description: B02208
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: effusion rate ; satellite measurements ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Ground deformation occurring on Mount Etna from 1994 to 1995 is analyzed in this paper. This period was characterized by intense volcanic activity at the four summit craters, with frequent strombolian activity, fire fountains, and emplacement of several new lava flows. Four GPS surveys were carried out during this time, two as routinely planned each year and an additional two in 1995 to acquire more data to follow the activity at the NE Crater. The comparisons between GPS surveys are reported in terms of horizontal and vertical displacements of each station and in terms of areal dilatation and principal strain axes. During the period considered in this work, a trend of increasing areal dilatation of the volcano (at a rate of about 5 mstrain/yr) was recognized; it was briefly interrupted by a small contraction (about 2 mstrain), in the autumn of 1995, when volcanic activity at the summit craters began. In detail, the strain distribution of the network is analyzed; it allows the detection of areas showing anomalous behavior, such as the summit zone or the Pernicana fault. Inversions of the ground displacement vectors have been performed by appropriately combining numerical and analytical approaches. Results of the inversions suggest structures defining an eastward and southward sliding of the eastern and southeastern sectors of Mount Etna.
    Description: CNR-GNV "Empedocle" ESA-ESRIN project
    Description: Published
    Description: 2153
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: GPS ; Ground deformation ; modeling ; Flank instability ; Mt. Etna ; Volcano dynamics ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Knowledge of the state of the upper atmosphere, and in particular its ionospheric part, is very important in several applications affected by space weather, especially the communications and navigation systems that rely on radio transmission. To better classify the ionosphere and forecast its disturbances over Europe, a data collection endeavour called the European Digital Upper Atmosphere Server (DIAS) was initiated in 2004 by a consortium formed around several European ionospheric stations that transmit in real-time ionospheric parameters automatically scaled. The DIAS project is a collaborative venture of eight institutions funded by the European Commission eContent Programme. The project seeks to improve access to digital information collected by public European institutes and to expand its use. The main objective of the DIAS project is to develop a pan-European digital data collection describing the state of the upper atmosphere, based on real-time information and historical data collections provided by most of the operating ionospheric stations in Europe. Various groups of users require data specifying upper atmospheric conditions over Europe for nowcasting and forecasting purposes. The DIAS system is designed to distribute such information. The successful operation of DIAS is based on the effective use of observational data in operational applications through the development of new added-value ionospheric products and services that best fit the needs of the market. DIAS is a unique European system, and its continuous operation will efficiently support radio propagation services with the most reliable information. DIAS began providing services to users in August 2006.
    Description: Published
    Description: 10-13
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: JCR Journal
    Description: reserved
    Keywords: Ionospheric monitoring and forecasting ; space weather ; upper atmosphere digital data collection ; 01. Atmosphere::01.02. Ionosphere::01.02.03. Forecasts ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...