ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physical Society  (663,490)
  • Cell Press  (242,170)
  • American Geophysical Union  (232,449)
  • Periodicals Archive Online (PAO)  (190,459)
Collection
Publisher
Years
  • 11
    Publication Date: 2024-01-08
    Description: Metabolic interactions between auxotrophs and prototrophs in microbial communities are understudied. Yu et al. showed how intracellular as well as intercellular metabolism affects community fitness in the absence and presence of abiotic stress, that is, drugs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-01-08
    Description: Scenarios—which account for the costs of and interactions among different mitigation options—show that we will need to remove hundreds of gigatons of carbon dioxide (CO2) from the atmosphere over the course of the century to limit warming to well below 2°C, make efforts to limit it to 1.5°C, and ensure the sustained well-being of our planet. Yet at present, only 2 Gt is being removed per year, and nearly all of it is from forestry—only 0.1% is from novel forms of carbon removal. This commentary shows that the deployment of novel CO2 removal (CDR) over the next decade, its formative phase, is likely to be consequential in determining whether CDR will be available at scale and in time to reach net-zero CO2 emissions consistent with the Paris Agreement’s temperature goal.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Elsevier | Cell Press
    Publication Date: 2023-10-06
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-06-21
    Description: Solar light/dark cycles and seasonal photoperiods underpin daily and annual rhythms of life on Earth. Yet, the Arctic is characterized by severalmonths of permanent illumination (‘‘midnight sun’’). To determine the persistence of 24h rhythms during the midnight sun, we investigated transcriptomic dynamics in the copepod Calanus finmarchicus during the summer solstice period in the Arctic, with the lowest diel oscillation and the highest altitude of the sun’s position. Here we reveal that in these extreme photic conditions, a widely rhythmic daily transcriptome exists, showing that very weak solar cues are sufficient to entrain organisms. Furthermore, at extremely high latitudes and under sea-ice, gene oscillations become re-organized to include 〈24h rhythms. Environmental synchronization may therefore be modulated to include non-photic signals (i.e. tidal cycles). The ability of zooplankton to be synchronized by extremely weak diel and potentially tidal cycles, may confer an adaptive temporal reorganization of biological processes at high latitudes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Centennial Fall Meeting, San Francisco, CA, USA, 2019-12-09-2019-12-13American Geophysical Union
    Publication Date: 2023-06-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-03-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tarry, D., Ruiz, S., Johnston, T., Poulain, P., Özgökmen, T., Centurioni, L., Berta, M., Esposito, G., Farrar, J., Mahadevan, A., & Pascual, A. Drifter observations reveal intense vertical velocity in a surface ocean front. Geophysical Research Letters, 49(18), (2022): e2022GL098969, https://doi.org/10.1029/2022gl098969.
    Description: Measuring vertical motions represent a challenge as they are typically 3–4 orders of magnitude smaller than the horizontal velocities. Here, we show that surface vertical velocities are intensified at submesoscales and are dominated by high frequency variability. We use drifter observations to calculate divergence and vertical velocities in the upper 15 m of the water column at two different horizontal scales. The drifters, deployed at the edge of a mesoscale eddy in the Alboran Sea, show an area of strong convergence (urn:x-wiley:00948276:media:grl64766:grl64766-math-0001(f)) associated with vertical velocities of −100 m day−1. This study shows that a multilayered-drifter array can be an effective tool for estimating vertical velocity near the ocean surface.
    Description: This research was supported by the Office of Naval Research (ONR) Departmental Research Initiative CALYPSO under program officers Terri Paluszkiewicz and Scott Harper. The authors' ONR Grant No. are as follows: DT, SR, AM, and AP N000141613130, TMSJ N000146101612470, PP N000141812418, TO N000141812138, LRC N000141712517, and N00014191269, MB and GE N000141812782 and N000141812039, and JTF N000141812431.
    Keywords: Drifters ; Vertical velocity ; Submesoscale ; Kinematic properties ; Fronts ; Alboran Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-03-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biasi, J., Tivey, M., & Fluegel, B. Volcano monitoring with magnetic measurements: a simulation of eruptions at axial seamount, Kilauea, Baroarbunga, and Mount Saint Helens. Geophysical Research Letters, 49(17), (2022): e2022GL100006, https://doi.org/10.1029/2022GL100006.
    Description: Monitoring of active volcanic systems is a challenging task due in part to the trade-offs between collection of high-quality data from multiple techniques and the high costs of acquiring such data. Here we show that magnetic data can be used to monitor volcanoes by producing similar data to gravimetric techniques at significantly lower cost. The premise of this technique is that magma and wall rock above the Curie temperature are magnetically “transparent,” but not stationary within the crust. Subsurface movements of magma can affect the crustal magnetic field measured at the surface. We construct highly simplified magnetic models of four volcanic systems: Mount Saint Helens (1980), Axial Seamount (2015–2020), Kīlauea (2018), and Bárðarbunga (2014). In all cases, observed or inferred changes to the magmatic system would have been detectable by modern magnetometers. Magnetic monitoring could become common practice at many volcanoes, particularly in developing nations with high volcanic risk.
    Description: This work was supported by the NSF Grant No 2052963 to J. Biasi and an internal Woods Hole Oceanographic Institution grant to M. Tivey.
    Keywords: Magnetism ; Volcanic hazards ; Hawaii ; Iceland ; Volcanology ; Monitoring
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-03-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bullock, E., Kipp, L., Moore, W., Brown, K., Mann, P., Vonk, J., Zimov, N., & Charette, M. Radium inputs into the Arctic Ocean from rivers a basin‐wide estimate. Journal of Geophysical Research: Oceans, 127(9), (2022): e2022JC018964, https://doi.org/10.1029/2022jc018964.
    Description: Radium isotopes have been used to trace nutrient, carbon, and trace metal fluxes inputs from ocean margins. However, these approaches require a full accounting of radium sources to the coastal ocean including rivers. Here, we aim to quantify river radium inputs into the Arctic Ocean for the first time for 226Ra and to refine the estimates for 228Ra. Using new and existing data, we find that the estimated combined (dissolved plus desorbed) annual 226Ra and 228Ra fluxes to the Arctic Ocean are [7.0–9.4] × 1014 dpm y−1 and [15–18] × 1014 dpm y−1, respectively. Of these totals, 44% and 60% of the river 226Ra and 228Ra, respectively are from suspended sediment desorption, which were estimated from laboratory incubation experiments. Using Ra isotope data from 20 major rivers around the world, we derived global annual 226Ra and 228Ra fluxes of [7.4–17] × 1015 and [15–27] × 1015 dpm y−1, respectively. As climate change spurs rapid Arctic warming, hydrological cycles are intensifying and coastal ice cover and permafrost are diminishing. These river radium inputs to the Arctic Ocean will serve as a valuable baseline as we attempt to understand the changes that warming temperatures are having on fluxes of biogeochemically important elements to the Arctic coastal zone.
    Description: This study was a broad, collaborative effort that would not have been possible without contributions from numerous funding sources, including the National Science Foundation (NSF-0751525, NSF-1736277, NSF-1458305, NSF-1938873, NSF-2048067, NSF-2134865), the NERC-BMBF project CACOON [NE/R012806/1] (UKRI NERC) and BMBF-03F0806A, and an EU Starting Grant (THAWSOME-676982).
    Keywords: Radium isotopes ; Arctic Ocean ; River fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-03-08
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sayani, H., Cobb, K., Monteleone, B., & Bridges, H. Accuracy and reproducibility of coral Sr/Ca SIMS timeseries in modern and fossil corals. Geochemistry, Geophysics, Geosystems, 23(9), (2022): e2021GC010068, https://doi.org/10.1029/2021gc010068.
    Description: Coral strontium-to-calcium ratios (Sr/Ca) provide quantitative estimates of past sea surface temperatures (SST) that allow for the reconstruction of changes in the mean state and climate variations, such as the El Nino-Southern Oscillation, through time. However, coral Sr/Ca ratios are highly susceptible to diagenesis, which can impart artifacts of 1–2°C that are typically on par with the tropical climate signals of interest. Microscale sampling via Secondary Ion Mass Spectrometry (SIMS) for the sampling of primary skeletal material in altered fossil corals, providing much-needed checks on fossil coral Sr/Ca-based paleotemperature estimates. In this study, we employ a set modern and fossil corals from Palmyra Atoll, in the central tropical Pacific, to quantify the accuracy and reproducibility of SIMS Sr/Ca analyses relative to bulk Sr/Ca analyses. In three overlapping modern coral samples, we reproduce bulk Sr/Ca estimates within ±0.3% (1σ). We demonstrate high fidelity between 3-month smoothed SIMS coral Sr/Ca timeseries and SST (R = −0.5 to −0.8; p 〈 0.5). For lightly-altered sections of a young fossil coral from the early-20th century, SIMS Sr/Ca timeseries reproduce bulk Sr/Ca timeseries, in line with our results from modern corals. Across a moderately-altered section of the same fossil coral, where diagenesis yields bulk Sr/Ca estimates that are 0.6 mmol too high (roughly equivalent to −6°C artifacts in SST), SIMS Sr/Ca timeseries track instrumental SST timeseries. We conclude that 3–4 SIMS analyses per month of coral growth can provide a much-needed quantitative check on the accuracy of fossil coral Sr/Ca-derived estimates of paleotemperature, even in moderately altered samples.
    Description: We'd also like to thank Yolande Berta and Georgia Tech's Center for Nanostructure Characterization for providing access to their SEM facilities, and the Khaled bin Sultan Living Ocean Foundation and The Nature Conservancy for financial and logistical support for field excursions to Palmyra. Funding for this work was provided by the National Science Foundation (Award Numbers 1502832 and 2002458 to K.M.C) and the National Oceanic and Atmospheric Administration (Award Number: NA11OAR4310165 to K.M.C).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-03-08
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC016007, doi:10.1029/2019JC016007.
    Description: Benthic inputs of nutrients help support primary production in the Chukchi Sea and produce nutrient‐rich water masses that ventilate the halocline of the western Arctic Ocean. However, the complex biological and redox cycling of nutrients and trace metals make it difficult to directly monitor their benthic fluxes. In this study, we use radium‐228, which is a soluble radionuclide produced in sediments, and a numerical model of an inert, generic sediment‐derived tracer to study variability in sediment inputs to the Chukchi Sea. The 228Ra observations and modeling results are in general agreement and provide evidence of strong benthic inputs to the southern Chukchi Sea during the winter, while the northern shelf receives higher concentrations of sediment‐sourced materials in the spring and summer due to continued sediment‐water exchange as the water mass traverses the shelf. The highest tracer concentrations are observed near the shelfbreak and southeast of Hanna Shoal, a region known for high biological productivity and enhanced benthic biomass.
    Description: This study presents data from multiple Arctic expeditions over the past two decades, and we are indebted to the captains, crews, and scientific parties that made this data collection possible. This work was funded by NSF awards OCE‐1458305 to M. Charette, OCE‐1458424 to W. Moore, OCE‐1434085 to D. Kadko, PLR‐1504333 to R. Pickart, and OPP‐1822334 to M. Spall. Funding was also provided by National Oceanic and Atmospheric Administration Grant NA14‐OAR4320158 to R. Pickart. L. Kipp was supported by an Ocean Frontier Institute Postdoctoral Fellowship. Radium data used in this manuscript are available in Table S1.
    Description: 2020-10-27
    Keywords: Chukchi Sea ; Benthic flux ; Radium‐228 ; GEOTRACES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...