ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 120 (2015): 379–398, doi:10.1002/2014JG002818.
    Description: A quantitative understanding of the rate at which land ecosystems are sequestering or losing carbon at national-, regional-, and state-level scales is needed to develop policies to mitigate climate change. In this study, a new improved historical land use and land cover change data set is developed and combined with a process-based ecosystem model to estimate carbon sources and sinks in land ecosystems of the conterminous United States for the contemporary period of 2001–2005 and over the last three centuries. We estimate that land ecosystems in the conterminous United States sequestered 323 Tg C yr−1 at the beginning of the 21st century with forests accounting for 97% of this sink. This land carbon sink varied substantially across the conterminous United States, with the largest sinks occurring in the Southeast. Land sinks are large enough to completely compensate fossil fuel emissions in Maine and Mississippi, but nationally, carbon sinks compensate for only 20% of U.S. fossil fuel emissions. We find that regions that are currently large carbon sinks (e.g., Southeast) tend to have been large carbon sources over the longer historical period. Both the land use history and fate of harvested products can be important in determining a region's overall impact on the atmospheric carbon budget. While there are numerous options for reducing fossil fuels (e.g., increase efficiency and displacement by renewable resources), new land management opportunities for sequestering carbon need to be explored. Opportunities include reforestation and managing forest age structure. These opportunities will vary from state to state and over time across the United States.
    Description: This work was supported by NSF grants 104918, 1137306, and 1237491; EPA grant XA-83600001-1; and DOE grant DE-FG02-94ER61937.
    Description: 2015-08-28
    Keywords: Carbon cycle ; Land carbon sinks ; Land use and land cover change ; Stand age ; Fossil fuel emissions ; Land use legacies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 28 (2014): 181-196, doi:10.1002/2013GB004743.
    Description: The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of ~6 Pg C yr−1. Global export estimates show small variation (typically 〈 10%) to factor of 2 changes in model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.
    Description: D.A.S. and K.O.B. acknowledge support from the National Aeronautics and Space Administration (NNX11AF63G). S.C.D. and S.F.S. acknowledge support from the National Science Foundation through the Center for Microbial Oceanography: Research and Education (C-MORE) (NSF EF-0424599).
    Description: 2014-09-10
    Keywords: Carbon cycle ; Biological pump ; Carbon export ; Remote sensing ; Food webs
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 44 (2017): 8404–8413, doi:10.1002/2017GL074389.
    Description: Surface ocean carbon chemistry is changing rapidly. Partial pressures of carbon dioxide gas (pCO2) are rising, pH levels are declining, and the ocean's buffer capacity is eroding. Regional differences in short-term pH trends primarily have been attributed to physical and biological processes; however, heterogeneous seawater carbonate chemistry may also be playing an important role. Here we use Surface Ocean CO2 Atlas Version 4 data to develop 12 month gridded climatologies of carbonate system variables and explore the coherent spatial patterns of ocean acidification and attenuation in the ocean carbon sink caused by rising atmospheric pCO2. High-latitude regions exhibit the highest pH and buffer capacity sensitivities to pCO2 increases, while the equatorial Pacific is uniquely insensitive due to a newly defined aqueous CO2 concentration effect. Importantly, dissimilar regional pH trends do not necessarily equate to dissimilar acidity ([H+]) trends, indicating that [H+] is a more useful metric of acidification.
    Description: 2018-02-16
    Keywords: Ocean acidification ; Carbon sink ; Revelle factor ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1471–1494, doi:10.1002/2014GB005037.
    Description: The direct respiration of sinking organic matter by attached bacteria is often invoked as the dominant sink for settling particles in the mesopelagic ocean. However, other processes, such as enzymatic solubilization and mechanical disaggregation, also contribute to particle flux attenuation by transferring organic matter to the water column. Here we use observations from the North Atlantic Ocean, coupled to sensitivity analyses of a simple model, to assess the relative importance of particle-attached microbial respiration compared to the other processes that can degrade sinking particles. The observed carbon fluxes, bacterial production rates, and respiration by water column and particle-attached microbial communities each spanned more than an order of magnitude. Rates of substrate-specific respiration on sinking particle material ranged from 0.007 ± 0.003 to 0.173 ± 0.105 day−1. A comparison of these substrate-specific respiration rates with model results suggested sinking particle material was transferred to the water column by various biological and mechanical processes nearly 3.5 times as fast as it was directly respired. This finding, coupled with strong metabolic demand imposed by measurements of water column respiration (729.3 ± 266.0 mg C m−2 d−1, on average, over the 50 to 150 m depth interval), suggested a large fraction of the organic matter evolved from sinking particles ultimately met its fate through subsequent remineralization in the water column. At three sites, we also measured very low bacterial growth efficiencies and large discrepancies between depth-integrated mesopelagic respiration and carbon inputs.
    Description: U.S. Environmental Protection Agency (EPA) STAR Grant Number: FP-91744301-0; National Science Foundation Grant Numbers OCE-1061883, EF-0424599, OCE-1155438, OCE-1059884, OCE-1031143; Gordon and Betty Moore Foundation Grant Numbers: 3301, 3789; Gordon and Betty Moore Foundation; Woods Hole Oceanographic Institution
    Description: 2016-03-25
    Keywords: Carbon cycle ; Particle flux ; Bacterial growth efficiency ; Bacterial respiration ; Microbial respiration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 30 (2016): 361–380, doi:10.1002/2015GB005318.
    Description: We measured triple oxygen isotopes and oxygen/argon dissolved gas ratios as nonincubation-based geochemical tracers of gross oxygen production (GOP) and net community production (NCP) on 16 container ship transects across the North Pacific from 2008 to 2012. We estimate rates and efficiency of biological carbon export throughout the full annual cycle across the North Pacific basin (35°N–50°N, 142°E–125°W) by constructing mixed layer budgets that account for physical and biological influences on these tracers. During the productive season from spring to fall, GOP and NCP are highest in the Kuroshio region west of 170°E and decrease eastward across the basin. However, deep winter mixed layers (〉200 m) west of 160°W ventilate ~40–90% of this seasonally exported carbon, while only ~10% of seasonally exported carbon east of 160°W is ventilated in winter where mixed layers are 〈120 m. As a result, despite higher annual GOP in the west than the east, the annual carbon export (sequestration) rate and efficiency decrease westward across the basin from export of 2.3 ± 0.3 mol C m−2 yr−1 east of 160°W to 0.5 ± 0.7 mol C m−2 yr−1 west of 170°E. Existing productivity rate estimates from time series stations are consistent with our regional productivity rate estimates in the eastern but not western North Pacific. These results highlight the need to estimate productivity rates over broad spatial areas and throughout the full annual cycle including during winter ventilation in order to accurately estimate the rate and efficiency of carbon sequestration via the ocean's biological pump.
    Description: This work was funded by a NDSEG Fellowship from the Office of Naval Research, a NSF Graduate Research Fellowship, and an ARCS Foundation Fellowship to H.I.P. and by NSF Ocean Sciences (0628663 and 1259055 to P.D.Q.).
    Description: 2016-08-27
    Keywords: North Pacific ; Carbon cycle ; Productivity ; Biological pump ; Gross oxygen production ; Net community production
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Global Biogeochemical Cycles 32 (2018): 1476-1497, doi:10.1029/2017GB005855.
    Description: It has become clear that anthropogenic carbon invasion into the surface ocean drives changes in the seasonal cycles of carbon dioxide partial pressure (pCO2) and pH. However, it is not yet known whether the resulting sea‐air CO2 fluxes are symmetric in their seasonal expression. Here we consider a novel application of observational constraints and modeling inferences to test the hypothesis that changes in the ocean's Revelle factor facilitate a seasonally asymmetric response in pCO2 and the sea‐air CO2 flux. We use an analytical framework that builds on observed sea surface pCO2 variability for the modern era and incorporates transient dissolved inorganic carbon concentrations from an Earth system model. Our findings reveal asymmetric amplification of pCO2 and pH seasonal cycles by a factor of two (or more) above preindustrial levels under Representative Concentration Pathway 8.5. These changes are significantly larger than observed modes of interannual variability and are relevant to climate feedbacks associated with Revelle factor perturbations. Notably, this response occurs in the absence of changes to the seasonal cycle amplitudes of dissolved inorganic carbon, total alkalinity, salinity, and temperature, indicating that significant alteration of surface pCO2 can occur without modifying the physical or biological ocean state. This result challenges the historical paradigm that if the same amount of carbon and nutrients is entrained and subsequently exported, there is no impact on anthropogenic carbon uptake. Anticipation of seasonal asymmetries in the sea surface pCO2 and CO2 flux response to ocean carbon uptake over the 21st century may have important implications for carbon cycle feedbacks.
    Description: Cooperative Institute for Climate Science Grant Number: NA17RJ2612; David and Lucile Packard Foundation/MBARI Grant Number: 4696; NOAA Office of Climate Observations Grant Number: NA11OAR4310066; NOAA. Grant Number NA11OAR4310066; KBR Grant Numbers: A08OAR4320752, NA17RJ2612
    Keywords: Revelle Factor ; Carbon cycle ; Seasonal cycle ; CO2 fluxes ; Ocean acidification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 1901–1926, doi:10.1002/2016JC012306.
    Description: Photosynthetic conversion of inline image to organic carbon and the transport of this carbon from the surface to the deep ocean is an important regulator of atmospheric inline image. To understand the controls on carbon fluxes in a productive region impacted by upwelling, we measured biological productivity via multiple methods during a cruise in Monterey Bay, California. We quantified net community production and gross primary production from measurements of inline image/Ar and inline image triple isotopes ( inline image), respectively. We simultaneously conducted incubations measuring the uptake of 14C, inline image, and inline image, and nitrification, and deployed sediment traps. At the start of the cruise (Phase 1) the carbon cycle was at steady state and the estimated net community production was 35(10) and 35(8) mmol C m−2 d−1 from inline image/Ar and 15N incubations, respectively, a remarkably good agreement. During Phase 1, net primary production was 96(27) mmol C m−2 d−1 from C uptake, and gross primary production was 209(17) mmol C m−2 d−1 from inline image. Later in the cruise (Phase 2), recently upwelled water with higher nutrient concentrations entered the study area, causing 14C and inline image uptake to increase substantially. Continuous inline image/Ar measurements revealed submesoscale variability in water mass structure and likely productivity in Phase 2 that was not evident from the incubations. These data demonstrate that inline image/Ar and inline image incubation-based NCP estimates can give equivalent results in an N-limited, coastal system, when the nonsteady state inline image fluxes are negligible or can be quantified.
    Description: Funding for this work was provided by NSF awards OCE-1060840 to R.H.R. Stanley, OCE-1129644 to D.P. Nicholson, OCE-1357042 to F.P. Chavez, NASA award NNX14AI06G to M.R. Fewings, the David and Lucile Packard Foundation through their generous annual donation to the Monterey Bay Aquarium Research Institute, an Ocean Ventures Fund award from the WHOI Academic Programs Office to CC Manning, and graduate scholarships from NSERC and CMOS to CC Manning.
    Description: 2017-09-11
    Keywords: Marine productivity ; Carbon cycle ; Dissolved gases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 43 (2016): 8645–8653, doi:10.1002/2016GL070226.
    Description: Estimates of primary and export production (PP and EP) based on satellite remote sensing algorithms and global biogeochemical models are widely used to provide year-round global coverage not available from direct observations. However, observational data to validate these approaches are limited. We find that no single satellite algorithm or model can reproduce seasonal and annual geochemically determined PP, export efficiency (EP/PP), and EP rates throughout the North Pacific basin, based on comparisons throughout the full annual cycle at time series stations in the subarctic and subtropical gyres and basin-wide regions sampled by container ship transects. The high-latitude regions show large PP discrepancies in winter and spring and strong effects of deep winter mixed layers on annual EP that cannot be accounted for in current satellite-based approaches. These results underscore the need to evaluate satellite- and model-based estimates using multiple productivity parameters measured over broad ocean regions throughout the annual cycle.
    Description: NDSEG Fellowship from the Office of Naval Research; NSF Graduate Research Fellowship; ARCS Foundation Fellowship
    Description: 2017-02-28
    Keywords: North Pacific ; Productivity ; Biological pump ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 1425–1438, doi:10.1002/2016JC012162.
    Description: Understanding the physical and biogeochemical processes that control CO2 and dissolved oxygen (DO) dynamics in the Arctic Ocean (AO) is crucial for predicting future air-sea CO2 fluxes and ocean acidification. Past studies have primarily been conducted on the AO continental shelves during low-ice periods and we lack information on gas dynamics in the deep AO basins where ice typically inhibits contact with the atmosphere. To study these gas dynamics, in situ time-series data have been collected in the Canada Basin during late summer to autumn of 2012. Partial pressure of CO2 (pCO2), DO concentration, temperature, salinity, and chlorophyll-a fluorescence (Chl-a) were measured in the upper ocean in a range of sea ice states by two drifting instrument systems. Although the two systems were on average only 222 km apart, they experienced considerably different ice cover and external forcings during the 40–50 day periods when data were collected. The pCO2 levels at both locations were well below atmospheric saturation whereas DO was almost always slightly supersaturated. Modeling results suggest that air-sea gas exchange, net community production (NCP), and horizontal gradients were the main sources of pCO2 and DO variability in the sparsely ice-covered AO. In areas more densely covered by sea ice, horizontal gradients were the dominant source of variability, with no significant NCP in the surface mixed layer. If the AO reaches equilibrium with atmospheric CO2 as ice cover continues to decrease, aragonite saturation will drop from a present mean of 1.00 ± 0.02 to 0.86 ± 0.01.
    Description: U.S. National Science Foundation Arctic Observing Network Grant Number: ARC-1107346 and ARC-0856479
    Description: 2017-08-25
    Keywords: Arctic Ocean ; CO2 ; O2 ; Biogeochemistry ; Dynamics ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32 (2018): 389-416, doi:10.1002/2017GB005790.
    Description: Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here we construct such a budget for eastern North America using historical data, empirical models, remote sensing algorithms, and process‐based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they, respectively, make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters, and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.
    Description: NASA Interdisciplinary Science program Grant Number: NNX14AF93G; NASA Carbon Cycle Science Program Grant Number: NNX14AM37G; NASA Ocean Biology and Biogeochemistry Program Grant Number: NNX11AD47G; National Science Foundation's Chemical Oceanography Program Grant Number: OCE‐1260574
    Description: 2018-10-04
    Keywords: Carbon cycle ; Coastal zone ; Tidal wetlands ; Estuaries ; Shelf waters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...