ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © Ecological Society of America, 2019. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Monographs 89(4), (2019): e01388, doi:10.1002/ecm.1388.
    Description: Ecologists widely acknowledge that a complex interplay of endogenous (density‐dependent) and exogenous (density‐independent) factors impact demographic processes. Individuals respond differently to those forces, ultimately shaping the dynamics of wild populations. Most comprehensive studies disentangling simultaneously the effects of density dependence, climate, and prey abundance while taking into account age structure were conducted in terrestrial ecosystems. However, studies on marine populations are lacking. Here we provide insight into the mechanisms affecting four vital rates of an apex Antarctic marine predator population, the South Polar Skua Catharacta maccormicki, by combining a nearly half‐century longitudinal time series of individual life histories and abundance data, with climatic and prey abundance covariates. Using multistate capture–mark–recapture models, we estimated age classes effects on survival, breeding, successful breeding with one or two chicks and successful breeding with two chicks probabilities, and assessed the different effects of population size, climate, and prey abundance on each age‐specific demographic parameter. We found evidence for strong age effects in the four vital rates studied. Vital rates at younger ages were lower than those of older age classes for all parameters. Results clearly evidenced direct and indirect influences of local climate (summer sea ice concentration), of available prey resources (penguins), and of intrinsic factors (size of the breeding population). More covariate effects were found on reproductive rates than on survival, and younger age classes were more sensitive than the older ones. Results from a deterministic age‐structured density‐dependent matrix population model indicated greater effects of prey abundance and sea ice concentration on the total population size than on the breeding population size. Both total population size and the number of breeders were strongly affected by low values of sea ice concentration. Overall, our results highlight the greater sensitivity of reproductive traits and of younger age classes to prey abundance, climate variability, and density dependence in a marine apex predator, with important consequences on the total population size but with limited effects on the breeding population size. We discuss the mechanisms by which climate variability, prey abundance, and population size may affect differentially age‐specific vital rates, and the potential population consequences of future environmental changes.
    Description: We are particularly grateful to all the field workers involved in the monitoring programs on South Polar Skuas and penguins at Pointe Géologie since 1963. These long‐term demographic studies and the present work were supported financially and logistically by the French Polar Institute IPEV (program 109, resp. H. Weimerskirch), Terres Australes et Antarctiques Françaises, Zone Atelier Antarctique et Subantarctique (CNRS‐INEE), Université de La Rochelle (PhD grant N. Pacoureau), Agence Nationale de la Recherche (ANR‐16‐CE02‐0007 Democom, resp. O. Gimenez). S. Jenouvrier acknowledges support from WHOI unrestricted funds. This study is a contribution to program SENSEI (SENtinels of the Sea Ice, resp. C. Barbraud and Y. Ropert‐Coudert) funded by the BNP Paribas Foundation. Handling and manipulation of all animals were approved by the IPEV ethics committee. All animals in this study were cared for in accordance with its guidelines. We thank D. Besson for help in the data management, D. T. Iles and M. G. Neubert for constructive comments, and two anonymous reviewers for their help in improving the manuscript. C. Barbraud and N. Pacoureau designed and coordinated the research. Data management and quality check were performed by K. Delord and N. Pacoureau. Analyses were performed by N. Pacoureau with the support of C. Barbraud and S. Jenouvrier. N. Pacoureau, K. Delord, S. Jenouvrier, and C. Barbraud wrote the manuscript.
    Keywords: Adélie Penguin Pygoscelis adeliae ; age structure ; Antarctica ; capture–mark–recapture ; Catharacta maccormicki ; density dependence ; deterministic density‐dependent matrix population model ; Emperor Penguin Aptenodytes forsteri ; food availability ; multistate model ; sea ice concentration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2005. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 15 (2005): 1036–1052, doi:10.1890/04-0434.
    Description: Boltonia decurrens is an endangered plant restricted to the Illinois River Valley. Its complex life cycle has evolved in response to the dynamics of the historic flood regime, which has changed dramatically in the last century due to the construction of navigation dams and agricultural levees. To explore the effects of these changes, we developed deterministic and stochastic matrix population models of the demography of Boltonia. We used periodic matrix models to incorporate intra-annual seasonal variation. We estimated parameters as a function of the timing of spring flood recession (early or late) and of growing season precipitation (high or low). Late floods and/or low precipitation reduce population growth (λ). Early floods and high precipitation lead to explosive population growth. Elasticity analysis shows that changes in floods and precipitation alter the life history pathways responsible for population growth, from annual to biennial and eventually clonal pathways. We constructed and analyzed a stochastic model in which flood timing and precipitation vary independently, and we computed the stochastic growth rate (log λs) and the variance growth rate (σ2) as functions of the frequency of late floods and low precipitation. Using historical data on floods and rainfall over the last 100 years, we found that log λs has declined as a result of hydrological changes accompanying the regulation of the river. Stochastic elasticity analysis showed that over that time the contribution of annual life history pathways to log λs has declined as the contributions of biennial and clonal pathways have increased. Over the same time period, σ2 has increased, in agreement with observations of large fluctuations in local B. decurrens populations. Undoubtedly, many plant and animal species evolved in concert with dynamic habitats and are now threatened by anthropogenic changes in those dynamics. The data and analyses used in this study can be applied to management and development strategies to preserve other dynamic systems.
    Description: This work was supported by grants to M. Smith from NSF (DEB 9509763, DED 9321517), USACE, Illinois Groundwater Consortium and USFWS, and an EPA STAR grant (U- 91578101-2) to P. Mettler. H. Caswell also received support from NSF grant OCE-9983976 and EPA grant R-82908901, and a Maclaurin Fellowship from the New Zealand Institute of Mathematics and its Applications.
    Keywords: Boltonia decurrens ; Conservation ; Elasticity ; Floodplain ; Flood regime ; LTRE ; Matrix population model ; Periodic matrix model ; Stochastic elasticity ; Stochastic environment ; Stochastic matrix model ; Threatened species
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2010. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Monographs 80 (2010): 49–66, doi:10.1890/08-2289.1.
    Description: We assess the response of pack ice penguins, Emperor (Aptenodytes forsteri) and Adélie (Pygoscelis adeliae), to habitat variability and, then, by modeling habitat alterations, the qualitative changes to their populations, size and distribution, as Earth's average tropospheric temperature reaches 2°C above preindustrial levels (ca. 1860), the benchmark set by the European Union in efforts to reduce greenhouse gases. First, we assessed models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) on penguin performance duplicating existing conditions in the Southern Ocean. We chose four models appropriate for gauging changes to penguin habitat: GFDL-CM2.1, GFDL-CM2.0, MIROC3.2(hi-res), and MRI-CGCM2.3.2a. Second, we analyzed the composited model ENSEMBLE to estimate the point of 2°C warming (2025–2052) and the projected changes to sea ice coverage (extent, persistence, and concentration), sea ice thickness, wind speeds, precipitation, and air temperatures. Third, we considered studies of ancient colonies and sediment cores and some recent modeling, which indicate the (space/time) large/centennial-scale penguin response to habitat limits of all ice or no ice. Then we considered results of statistical modeling at the temporal interannual-decadal scale in regard to penguin response over a continuum of rather complex, meso- to large-scale habitat conditions, some of which have opposing and others interacting effects. The ENSEMBLE meso/decadal-scale output projects a marked narrowing of penguins' zoogeographic range at the 2°C point. Colonies north of 70° S are projected to decrease or disappear: 50% of Emperor colonies (40% of breeding population) and 75% of Adélie colonies (70% of breeding population), but limited growth might occur south of 73° S. Net change would result largely from positive responses to increase in polynya persistence at high latitudes, overcome by decreases in pack ice cover at lower latitudes and, particularly for Emperors, ice thickness. Adélie Penguins might colonize new breeding habitat where concentrated pack ice diverges and/or disintegrating ice shelves expose coastline. Limiting increase will be decreased persistence of pack ice north of the Antarctic Circle, as this species requires daylight in its wintering areas. Adélies would be affected negatively by increasing snowfall, predicted to increase in certain areas owing to intrusions of warm, moist marine air due to changes in the Polar Jet Stream.
    Description: This project was funded by the World Wildlife Fund and the National Science Foundation, NSF grant OPP-0440643 (D. G. Ainley), and a Marie-Curie Fellowship to S. Jenouvrier.
    Keywords: Adelie penguin ; Antarctica ; Climate change ; Climate modeling ; Emperor Penguin ; Habitat optimum ; Sea ice ; 2°C warming
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 6 (2015): art125, doi:10.1890/ES14-00287.1.
    Description: Closely related species with similar ecological requirements should exhibit segregation along spatial, temporal, or trophic niche axes to limit the degree of competitive overlap. For migratory marine organisms like seabirds, assessing such overlap during the non-breeding period is difficult because of long-distance dispersal to potentially diffuse foraging habitats. Miniaturization of geolocation devices and advances in stable isotope analysis (SIA), however, provide a robust toolset to quantitatively track the movements and foraging niches of wide ranging marine animals throughout much of their annual cycle. We used light-based geolocation tags and analyzed stable carbon and nitrogen isotopes from tail feathers to simultaneously characterize winter movements, habitat utilization, and overlap of spatial and isotopic niches of migratory chinstrap (Pygoscelis antarctica) and Adélie (P. adeliae) penguins during the austral winter of 2012. Chinstrap penguins exhibited a higher diversity of movements and occupied portions of the Southern Ocean from 138° W to 30° W within a narrow latitudinal band centered on 60° S. In contrast, all tracked Adélie penguins exhibited smaller-scale movements into the Weddell Sea and then generally along a counter-clockwise path as winter advanced. Inter-specific overlap during the non-breeding season was low except during the months immediately adjacent to the summer breeding season. Intra-specific overlap by chinstraps from adjacent breeding colonies was higher throughout the winter. Spatial segregation appears to be the primary mechanism to maintain inter- and intra-specific niche separation during the non-breeding season for chinstrap and Adélie penguins. Despite low spatial overlap, however, the data do suggest that a narrow pelagic corridor in the southern Scotia Sea hosted both chinstrap and Adélie penguins for most months of the year. Shared occupancy and similar isotopic signatures of the penguins in that region suggests that the potential for inter-specific competition persists during the winter months. Finally, we note that SIA was able to discriminate eastward versus westward migrations in penguins, suggesting that SIA of tail feathers may provide useful information on population-level distribution patterns for future studies.
    Description: Funds for the GLS tags were provided by the National Marine Sanctuary Foundation. Additional support for this project was provided by a Woods Hole Oceanographic Devonshire Scholarship as well as funding from the Ocean Life Institute and SeaWorld Bush Gardens Conservation Fund to MJP.
    Keywords: Antarctica ; Geolocation ; Migration ; Niche ; Pygoscelis adeliae ; Pygoscelis antarctica ; Stable isotope ; Winter
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2005. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 15 (2005): 2097–2108, doi:10.1890/04-1762.
    Description: We investigated the effects of fire on population growth rate and invasive spread of the perennial tussock grass Molinia caerulea. During the last decades, this species has invaded heathland communities in Western Europe, replacing typical heathland species such as Calluna vulgaris and Erica tetralix. M. caerulea is considered a major threat to heathland conservation. In 1996, a large and unintended fire destroyed almost one-third of the Kalmthoutse Heide, a large heathland area in northern Belgium. To study the impact of this fire on the population dynamics and invasive spread of M. caerulea, permanent monitoring plots were established both in burned and unburned heathland. The fate of each M. caerulea individual in these plots was monitored over four years (1997–2000). Patterns of seed dispersal were inferred from a seed germination experiment using soil cores sampled one month after seed rain at different distances from seed-producing plants. Based on these measures, we calculated projected rates of spread for M. caerulea in burned and unburned heathland. Elasticity and sensitivity analyses were used to determine vital rates that contributed most to population growth rate, and invasion speed. Invasion speed was, on average, three times larger in burned compared to unburned plots. Dispersal distances on the other hand, were not significantly different between burned and unburned plots indicating that differences in invasive spread were mainly due to differences in demography. Elasticities for fecundity and growth of seedlings and juveniles were higher for burned than for unburned plots, whereas elasticities for survival were higher in unburned plots. Finally, a life table response experiment (LTRE) analysis revealed that the effect of fire was mainly contributed by increases in sexual reproduction (seed production and germination) and growth of seedlings and juveniles. Our results clearly showed increased invasive spread of M. caerulea after fire, and call for active management guidelines to prevent further encroachment of the species and to reduce the probability of large, accidental fires in the future. Mowing of resprouted plants before flowering is the obvious management tactic to halt massive invasive spread of the species after fire.
    Description: This work was supported by the Flemish Fund for Scientific Research (FWO) to HJ, the U.S. National Science foundation (DEB-0235692, OCE-0083976), and the U.S. Environmental Protection Agency (R-8290891) to MGN.
    Keywords: Disturbance ; Elasticity ; Fire ; Integrodifference equations ; Invasive spread ; LTRE ; Matrix population model ; Molinia caerulea ; Sensitivity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Institute of Physics
    In:  Bristol, Institute of Physics, vol. 8, no. Publ. No. 12, pp. 95-104, (ISBN 0-865-42078-5)
    Publication Date: 1986
    Keywords: Rock mechanics ; Fracture ; Boundary Element Method ; Elasticity ; Dynamic
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...