ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk  (12)
  • InSAR
  • Oceanographic instrumentation
  • AGU  (13)
  • Institute of Physics
  • Molecular Diversity Preservation International
Collection
Years
  • 1
    Publication Date: 2022-06-08
    Description: No abstract
    Description: Published
    Description: 318
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: N/A or not JCR
    Description: partially_open
    Keywords: Probabilistic Volcanic Hazard ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution (3.0) License. The definitive version was published in Sensors 9 (2009): 404-429, doi:10.3390/s90100404.
    Description: An instrument has been built to carry out continuous in-situ measurement of small differences in water pressure, conductivity and temperature, in natural surface water and groundwater systems. A low-cost data telemetry system provides data on shore in real time if desired. The immediate purpose of measurements by this device is to continuously infer fluxes of water across the sediment-water interface in a complex estuarine system; however, direct application to assessment of sediment-water fluxes in rivers, lakes, and other systems is also possible. Key objectives of the design include both low cost, and accuracy of the order of ±0.5 mm H2O in measured head difference between the instrument’s two pressure ports. These objectives have been met, although a revision to the design of one component was found to be necessary. Deployments of up to nine months, and wireless range in excess of 300 m have been demonstrated.
    Keywords: Pressure sensor ; Wireless ; Hydrology ; Data logger ; Oceanographic instrumentation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-14
    Description: Hydrothermal alteration may weaken volcanic rocks, causing the gravitational instability of portions of active volcanoes with potentially hazardous collapses. Here we show high‐resolution multibeam, magnetic and gravity surveys of the Marsili seamount, the largest active volcano of Europe located in the southern Tyrrhenian back‐arc basin. These surveys reveal zones with exceptionally low densities and with vanishing magnetizations, due probably to the comminution of basalts during hyaloclastic submarine eruptions and to their post‐eruptive hydrothermal alteration. The location of these regions correlates with morphological data showing the occurrence of past collapses. Similar evidence has been obtained from pre existing data at Vavilov Seamount, another older volcanic system in the Tyrrhenian back‐arc basin. Here a large volume of at least 50 km3 may have collapsed in a single event from its 40 km long western flank. Given the similarities between these volcanoes, a large collapse event may also be expected at Marsili.
    Description: Published
    Description: L03305
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: 3.4. Geomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Marsili Seamount ; Gravity anomalies ; Magnetic anomalies ; Tyrrhenian Sea ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-27
    Description: The Sciara del Fuoco (SdF) landslides that occurred at the end of December 2002 prompted researchers to install geodetic networks to monitor deformations related to potential new slope failures. With this aim, an integrated multiparametric monitoring system was designed and deployed. In particular, this complex monitoring system is composed of four single systems: an electronic distance measurement network, installed immediately after the landslide events, a realtime GPS network, a ground-based interferometric linear synthetic aperture radar (GB-InSAR), and an automated topographic monitoring system (named Theodolite Robotic Observatory of Stromboli, or THEODOROS); the three last systems provided a continuous monitoring of selected points or sectors of the SdF. Data acquired from different systems have been jointly analyzed to reach a better understanding of the SdF dynamics. Displacement data obtained from the topographic systems are compared with those obtained from GB-InSAR, and the results of the comparison are analyzed and discussed. Furthermore, in this chapter, an example of a warning system that can detect slope instability precursors on the SdF based on a statistical analysis of the data collected by the THEODOROS system is reported.
    Description: Published
    Description: 183-199
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: reserved
    Keywords: Flank instability ; Slope failure ; Terrestrial geodesy ; Ground Based InSAR ; Continuous GPS ; Landslide monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Ground deformation data from GPS and differential synthetic aperture radar interferometry (DInSAR) techniques are analyzed to study the July–August 2001 Mount Etna eruption as well as the dynamics preceding and following this event. Five GPS surveys were carried out on the entire Mount Etna network or on its southeastern part, from July 2000 to October 2001. Five ERS-2 ascending passes and three descending ones are used to form five interferograms spanning periods from a month to 1 year, before and encompassing the eruption. Numerical and analytical inversions of the GPS and DInSAR data were performed to obtain analytical models for preeruptive, syneruptive and posteruptive periods. The deformation sources obtained were from the Mogi model: (1) pressure sources located beneath the upper western flank of the volcano, inflating before the eruption onset and deflating afterward; (2) tensile dislocations to model the intrusion of a N-S dike in the central part of the volcano; and (3) two sliding and two normal dislocations to model the eastern and southern flank dynamics. This study confirms that the lower vents of the eruption were fed by a magma stored at depth ranging from 9 to 4 km below sea level, as proposed from petrochemical and geophysical researches. The rising of the magma through the shallow crust started months before the eruption onset but accelerated on the last day; this study suggests that in the volcanic pile the path of the rising magma was driven by the volcano topography. The eastern sliding plane and the interaction between dike intrusion and flank instability have been better defined with respect to previous studies. The sliding motion abruptly accelerated with the dike intrusion, and this continued after the end of the eruption. The acceleration was accompanied by the propagation of the strain field toward the eastern periphery of the volcano.
    Description: We acknowledge the ‘‘Istituto Nazionale di Geofisica e Vulcanologia’’, the Italian ‘‘Dipartimento per la Protezione Civile’’ and the European Community (contract INGV-DPC UR V3_6/36 and VOLUME Project) for their economic contribution to this research. The SAR data are provided by ESA-ESRIN.
    Description: Published
    Description: B06405
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Ground deformation ; GPS ; InSAR ; Mt. Etna ; Modelling ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Forecasting the dispersal of ash from explosive volcanoes is a scientific challenge to modern volcanology. It also represents a fundamental step in mitigating the potential impact of volcanic ash on urban areas and transport routes near explosive volcanoes. To this end we developed a web-based early-warning modeling tool named MAFALDA (Modeling And Forecasting Ash Loading and Dispersal in the Atmosphere) able to quantitatively forecast ash concentrations in the air and on the ground. The main features of MAFALDA are: the usage of (1) a dispersal model, named VOL-CALPUFF (Barsotti et al. 2008) that couples the column ascent phase with the ash-cloud transport and (2) high-resolution weather forecasting data, the capability to run and merge multiple scenarios, and the web-based structure of the procedure that makes it suitable as an early-warning tool. MAFALDA produces plots for a detailed analysis of ash-cloud dynamics and ground deposition, as well as synthetic 2D maps of areas potentially affected by dangerous concentrations of ash. A first application of MAFALDA to the long-lasting weak plumes produced at Mt. Etna (Italy) is presented. A similar tool can be useful to civil protection authorities and volcanic observatories in reducing the impact of the eruptive events. MAFALDA can be accessed at http://mafalda.pi.ingv.it.
    Description: Published
    Description: Q12019
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic ash forecast ; numerical modeling ; early warning modeling tool ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: No abstract
    Description: Published
    Description: L08312
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: landslide tsunami ; Mt. Etna ; paleo-tsunami deposits ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Assessment of the hazard from lava flow inundation at the active volcano of Mt. Etna (Italy) was performed by calculating the probability of lava flow inundation at each position on the volcano. A probability distribution for the formation of new vents was calculated using geological and volcanological data from past eruptions. The simulated lava flows from these vents were emplaced using a maximum expected flow length derived from geological data on previous lava flows. Simulations were run using DOWNFLOW, a DEM-based model designed to predict lava flow paths. Different eruptive scenarios were simulated by varying the elevation and probability distribution of eruptive points. Inundation maps show that the city of Catania and the coastal zone may only be impacted by flows erupted from low-altitude vents (〈 1500 m elevation), and that flank eruptions at elevations 〉 2000 m preferentially inundate the northeast and southern sectors of the volcano as well as the Valle del Bove. Eruptions occurring in the summit area (〉 3000 m elevation) pose no threat to the local population. Discrepancies between the results of simple, hydrological models and those of the DOWNFLOW model show that hydrological approaches are inappropriate when dealing with Etnean lava flows. Because hydrological approaches are not designed to reproduce the full complexity of lava flow spreading, they underestimate the catchment basins when the fluid has a complex rheology.
    Description: In press
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: lava flows ; DOWNFLOW ; hazard ; Mt. Etna ; Sicily ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The 2002–2003 Mount Etna eruption and the associated deformation provide a unique possibility to study the relationships between volcanism and volcano instability. The sequence started with movement of the eastern volcano flank and was associated with earthquakes and the formation of surface ruptures. Then the eruption occurred from fissures at the north and south rift zones and was followed by additional flank movement, seismic swarms, and surface ruptures. The overall area of flank movement implicated more than 700 km2. In this paper we investigate how episodes of magmatic events (eruptions and intrusions) and flank movement interact. In three-dimensional numerical models we simulate the volcano-tectonic events and calculate changes in the static stress field. The models suggest that the 2002–2003 events are the result of interrelated processes consisting of (1) the preeruptive intrusion of magma and inflation of the volcano, which induced (2) the movement of the volcano east flank, (3) facilitated the eruption, and (4) led to the slip of a much larger part of the eastern and southeastern flanks. Understanding the precise interconnectivity of these processes may help to forecast the behavior during future volcanic crisis at Mount Etna, which is crucial in minimizing volcanic and seismic hazards on the highly populated eastern sector of the volcano.
    Description: Published
    Description: 1-12
    Description: partially_open
    Keywords: Mount Etna ; flank instability ; volcano deformation ; volcano-tectonic interaction ; elastic stress field modeling ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 2262915 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: A thermal modeling of the Vesuvius is presented, based on its magmatic and volcanic history. A 2D numerical scheme has been developed to evaluate the heat transfer inside and around a magma body, the latent heat of crystallization and the inputs of magma from the asthenosphere to a crustal reservoir. Assuming a ratio 〉1 between velocities of magma ascending in the conduit and magma laterally displaced in the reservoir, the results indicate that, after 40 ka, the reservoir is vertically thermally zoned. As a consequence it hosts magma batches that can individually differentiate, mix and be contaminated by the crust, and produce the spectrum of isotopic compositions of the Vesuvian products. The thermal model reproduces the geothermal gradient and the brittle-ductile transition (250– 300 C) at 6 km of depth (the maximum depth of earthquake foci) only after 0.5–1 Ma, implying a long lived magma chamber below the volcano.
    Description: Published
    Description: L17302
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 244766 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...