ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
  • 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
  • Società Geologica Italiana  (3)
  • Springer-Verlag  (3)
  • Nature Publishing Group  (2)
Collection
Years
  • 1
    Publication Date: 2017-12-11
    Description: For any scientist working in seismotectonics, the Calabrian Arc represents the most challenging area of Italy. Lying on top of a subduction zone, it is characterised by a complex geological structure largely inherited from the early stages of the collision between the Africa and Eurasia plates. The current and extremely vigorous seismogenic processes, although generated by a mechanism driven by the subduction, are no longer a direct consequence of plate convergence. About one fourth of the largest Italian earthquakes concentrates in a narrow strip of land (roughly 200x70 km) corresponding to the administrative region of Calabria. The present-day seismicity, both shallow and deep, provides little help in detecting the most insidious seismogenic structures, nor does the available record of GPS-detected strains. In addition to its fierce seismicity, the Calabrian Arc also experiences uplift at rates that are the largest in Italy, thus suggesting that active tectonic processes are faster here than elsewhere in the country. Calabrian earthquakes are strong yet inherently elusive, and even the largest of those that have occurred over the past two centuries do not appear to have caused unambiguous surface faulting. The identified active structures are not sufficient to explain in full the historical seismicity record, suggesting that some of the main seismogenic sources still lie unidentified, for instance in the offshore. As a result, the seismogenic processes of Calabria have been the object of a lively debate at least over the past three decades. In this work we propose to use the current geodynamic framework of the Calabrian Arc as a guidance to resolve the ambiguities that concern the identification of the presumed known seismogenic sources, and to identify those as yet totally unknown. Our proposed scheme is consistent with the location of the largest earthquakes, the recent evolution of the regions affected by seismogenic faulting, and the predictions of current evolutionary models of the crust overlying a W-dipping subduction zone.
    Description: Published
    Description: 365-388
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: open
    Keywords: Calabrian Arc ; Calabrian earthquakes ; Seismotectonics ; Seismogenic sources ; DISS database ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Southern Apulia (Adriatic foreland, Italy), has long been considered a “stable area” lying in between two active orogens, but in fact its tectonic framework is poorly known. To learn more about this topic, we carried out an original structural analysis on Pleistocene deposits. The results indicate that southern Apulia has been affected by mild but discernible brittle deformation throughout the Middle and Late Pleistocene. Joints prevail, whereas faults are rare and all characterized by small displacement. Horizontal extension dominates throughout the entire study area; the SW-NE to SSW-NNE direction is the most widespread. WNW-ESE extension prevails in the Adriatic side portion of the study area, but the dispersion of the measured plane directions is high, suggesting that the local strain field is not characterized by a strongly predominant trend. A Middle and Late Pleistocene, SW-NE to SSW-NNE– oriented maximum extension is not surprising for the study area, as it is compatible with most of the available geodynamic models, whereas the different state of deformation affecting the Adriatic side of the study area requires further investigations. We tentatively interpreted this anomaly as reflecting some regional variation of the general geodynamic frame, for instance as the farthest evidence of ongoing compressional deformation across the W-verging Albanide-Hellenide foldand- thrust belt.
    Description: Study supported by a MIUR-COFIN 2004 Project (Bari RU: G. Mastronuzzi resp.; Lecce RU: P. Sansò resp.) and by the Project S2 funded in the framework of the 2004-2006 agreement between the Italian Department of Civil Protection and INGV (Research Units 2.4 and 2.11).
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: active tectonics ; brittle deformation ; Pleistocene ; Salento ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Most flank eruptions within a central stratovolcano are triggered by lateral draining of magma from its central conduit, and only few eruptions appear to be independent of the central conduit. In order to better highlight the dynamics of flank eruptions in a central stratovolcano, we review the eruptive history of Etna over the last 100 years. In particular, we take into consideration the Mount Etna eruption in 2001, which showed both summit activity and a flank eruption interpreted to be independent from the summit system. The eruption started with the emplacement of a ~N-S trending peripheral dike, responsible for the extrusion of 75% of the total volume of the erupted products. The rest of the magma was extruded through the summit conduit system (SE crater), feeding two radial dikes. The distribution of the seismicity and structures related to the propagation of the peripheral dike and volumetric considerations on the erupted magmas exclude a shallow connection between the summit and the peripheral magmatic systems during the eruption. Even though the summit and the peripheral magmatic systems were independent at shallow depths (〈3 km b.s.l.), petro-chemical data suggest that a common magma rising from depth fed the two systems. This deep connection resulted in the extrusion of residual magma from the summit system and of new magma from the peripheral system. Gravitational stresses predominate at the surface, controlling the emplacement of the dikes radiating from the summit; conversely, regional tectonics, possibly related to N-S trending structures, remains the most likely factor to have controlled at depth the rise of magma feeding the peripheral eruption.
    Description: Published
    Description: 517-529
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Central volcanoes ; Summit and flank eruptions ; Dikes ; Tectonics ; Volcano load ; Mount Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Southern Apulia (Adriatic foreland, Italy), has long been considered a «stable area» lying in between two active orogens, but in fact its tectonic framework is poorly known. To learn more about this topic, we carried out an original structural analysis on Pleistocene deposits. The results indicate that southern Apulia has been affected by mild but discernible brittle deformation throughout the Middle and Late Pleistocene. Joints prevail, whereas faults are rare and all characterized by small displacement. Horizontal extension dominates throughout the entire study area; the SW-NE to SSW-NNE direction is the most widespread. WNW-ESE extension prevails in the Adriatic side portion of the study area, but the dispersion of the measured plane directions is high, suggesting that the local strain field is not characterized by a strongly predominant trend. A Middle and Late Pleistocene, SW-NE to SSW-NNE–oriented maximum extension is not surprising for the study area, as it is compatible with most of the available geodynamic models, whereas the different state of deformation affecting the Adriatic side of the study area requires further investigations. We tentatively interpreted this anomaly as reflecting some regional variation of the general geodynamic frame, for instance as the farthest evidence of ongoing compressional deformation across the W-verging Albanide-Hellenide foldand- thrust belt.
    Description: Published
    Description: 33-46
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: active tectonics ; brittle deformation ; Pleistocene ; Salento ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Dikes within stratovolcanoes are commonly expected to have radial patterns. However, other patterns may also be found, due to regional stresses, magmatic reservoirs and topographic variations. Here, we investigate dike patterns within volcanic edifices by studying dike and fissure complexes at Somma-Vesuvius and Etna (Italy) using analogue models. At the surface, the dikes and fissures show a radial configuration. At depths of tens to several hundreds of metres, in areas exposed by erosion, tangential and oblique dikes are also present. Analogue models indicate that dikes approaching the flanks of cones, regardless of their initial orientation, reorient to become radial (parallel to the maximum gravitational stress). This re-orientation is a significant process in shallow magma migration and may also control the emplacement of dikefed fissures reaching the lower slopes of the volcano.
    Description: This work was partly financed with DPC-INGV LAVA Project.
    Description: Published
    Description: 219-223
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Dike propagation ; Central volcanic edifices ; Stress ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: New Sr–Nd–Pb isotopic ratios and trace element data for volcanic mafic rocks outcropping along a E–W transect in southern Italy, from Mt. Vulture to Neapolitan volcanoes, are reported. The variation of LILE/HFSE, HFSE/HFSE and radiogenic isotopes along this transect indicates that all of these volcanoes contain both intra-plate and subduction-related signatures, with the former decreasing from Mt. Vulture to Campanian volcanoes. New data are also reported for the Paleocene alkaline rocks from Pietre Nere (Apulia foreland), which show isotopic ratios mostly overlapping the values for Mediterranean intra-plate volcanoes as well as the Eocene–Oligocene alkaline mafic lavas from the northern Adria plate. Pietre Nere provides evidence for an OIB mantle composition of FOZO-type, free of subduction influences, that is present beneath the Adria plate (Africa) before its collision with Europe. After this collision, and formation of the southern Apennines, westward inflow of mantle from the Adria plate to the Campanian area occurred, as a consequence of slab break off. Interaction of subduction components with inflowing Adria mantle generated hybrid sources beneath the Vulture–Campania area, which can explain the compositional features of both Mt. Vulture and the Campanian mafic rocks. Therefore, mafic magmas from these volcanoes represent variable degrees of mixing between different mantle components.
    Description: Published
    Description: reserved
    Keywords: isotopic ; southern Italy ; Mt. Vulture ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 901510 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The MW 8.8 mega-thrust earthquake and tsunami that occurred on February 27, 2010, offshore Maule region, Chile, was not unexpected. A clearly identified seismic gap existed in an area where tectonic loading has been accumulating since the great 1835 earthquake experienced and described by Darwin during the voyage of the Beagle. Here we jointly invert tsunami and geodetic data (InSAR, GPS, land-level changes), to derive a robust model for the co-seismic slip distribution and induced co-seismic stress changes, and compare them to past earthquakes and the pre-seismic locking distribution. We aim to assess if the Maule earthquake has filled the Darwin gap, decreasing the probability of a future shock . We find that the main slip patch is located to the north of the gap, overlapping the rupture zone of the MW 8.0 1928 earthquake, and that a secondary concentration of slip occurred to the south; the Darwin gap was only partially filled and a zone of high pre-seismic locking remains unbroken. This observation is not consistent with the assumption that distributions of seismic rupture might be correlated with pre-seismic locking, potentially allowing the anticipation of slip distributions in seismic gaps. Moreover, increased stress on this unbroken patch might have increased the probability of another major to great earthquake there in the near future.
    Description: Published
    Description: 173-177
    Description: 3.1. Fisica dei terremoti
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Source process ; Chile ; Tsunami ; Joint Inversion ; Seismic Gap ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The 2011 Tohoku-oki (Mw 9.1) earthquake is so far the best-observed megathrust rupture, which allowed the collection of unprecedented offshore data. The joint inversion of tsunami waveforms (DART buoys, bottom pressure sensors, coastal wave gauges, and GPS-buoys) and static geodetic data (onshore GPS, seafloor displacements obtained by a GPS/acoustic combination technique), allows us to retrieve the slip distribution on a non-planar fault. We show that the inclusion of near-source data is necessary to image the details of slip pattern (maximum slip ,48 m, up to ,35 m close to the Japan trench), which generated the large and shallow seafloor coseismic deformations and the devastating inundation of the Japanese coast. We investigate the relation between the spatial distribution of previously inferred interseismic coupling and coseismic slip and we highlight the importance of seafloor geodetic measurements to constrain the interseismic coupling, which is one of the key-elements for long-term earthquake and tsunami hazard assessment.
    Description: Published
    Description: 385
    Description: 3.1. Fisica dei terremoti
    Description: N/A or not JCR
    Description: restricted
    Keywords: Tohoku ; Subduction ; Tsunami ; Inverse problem ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...