ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:551.6  (8)
  • Site effects
  • Volcano seismology
  • Springer Netherlands  (11)
  • Wiley  (3)
  • John Wiley & Sons, Inc.  (2)
  • 1
    Publication Date: 2023-12-19
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉We monitored stable water isotopes in liquid precipitation and atmospheric water vapour (δ〈sub〉v〈/sub〉) using in situ cavity ring‐down spectroscopy (CRDS) over a 2 month period in an urban green space area in Berlin, Germany. Our aim was to better understand the origins of atmospheric moisture and its link to water partitioning under contrasting urban vegetation. δ〈sub〉v〈/sub〉 was monitored at multiple heights (0.15, 2 and 10 m) in grassland and forest plots. The isotopic composition of δ〈sub〉v〈/sub〉 above both land uses was highly dynamic and positively correlated with that of rainfall indicating the changing sources of atmospheric moisture. Further, the isotopic composition of δ〈sub〉v〈/sub〉 was similar across most heights of the 10 m profiles and between the two plots indicating high aerodynamic mixing. Only at the surface at ~0.15 m height above the grassland δ〈sub〉v〈/sub〉 showed significant differences, with more enrichment in heavy isotopes indicative of evaporative fractionation especially after rainfall events. Further, disequilibrium between δ〈sub〉v〈/sub〉 and precipitation composition was evident during and right after rainfall events with more positive values (i.e., values of vapour higher than precipitation) in summer and negative values in winter, which probably results from higher evapotranspiration and more convective precipitation events in summer. Our work showed that it is technically feasible to produce continuous, longer‐term data on δ〈sub〉v〈/sub〉 isotope composition in urban areas from in situ monitoring using CRDS, providing new insights into water cycling and partitioning across the critical zone of an urban green space in Central Europe. Such data have the potential to better constrain the isotopic interface between the atmosphere and the land surface and to thus, improve ecohydrological models that can resolve evapotranspiration fluxes.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉In situ measurements of urban atmospheric water isotopes (δ〈sub〉v〈/sub〉) at different heights produce reliable and stable high‐resolution data. Urban atmospheric vapour is influenced by varying drivers depending on the type of green space. δ〈sub〉v〈/sub〉 above grassland and tree stands was similar at 10 m height, but near‐surface δ〈sub〉v〈/sub〉 indicated higher evaporation and vapour enrichment over grass. We detected occasional dis‐equilibrium between vapour and precipitation isotopes.〈boxed-text position="anchor" content-type="graphic" id="hyp14989-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:08856087:media:hyp14989:hyp14989-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Einstein Stiftung Berlin http://dx.doi.org/10.13039/501100006188
    Description: Leverhulme Trust http://dx.doi.org/10.13039/501100000275
    Description: German Research Foundation http://dx.doi.org/10.13039/501100001659
    Description: Einstein Research Unit
    Description: Einstein Foundation Berlin and Berlin University Alliance
    Description: BiNatur
    Description: BMBF http://dx.doi.org/10.13039/501100002347
    Description: Leverhulme Trust through the ISO‐LAND project
    Keywords: ddc:551.6 ; atmospheric vapour isotopes ; cities ; ecohydrology ; equilibrium assumption ; in situ monitoring ; urban green spaces
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-15
    Description: In mountain environments dimensions of climate change are unclear because of limited availability of meteorological stations. However, there is a necessity to assess the scope of local climate change, as the livelihood and food systems of subsistence-based communities are already getting impacted. To provide more clarity about local climate trends in the Pamir Mountains of Tajikistan, this study integrates measured climate data with community observations in the villages of Savnob and Roshorv. Taking a transdisciplinary approach, both knowledge systems were considered as equally pertinent and mutually informed the research process. Statistical trends of temperature and snow cover were retrieved using downscaled ERA5 temperature data and the snow cover product MOD10A1. Local knowledge was gathered through community workshops and structured interviews and analysed using a consensus index. Results showed, that local communities perceived increasing temperatures in autumn and winter and decreasing amounts of snow and rain. Instrumental data records indicated an increase in summer temperatures and a shortening of the snow season in Savnob. As both knowledge systems entail their own strengths and limitations, an integrative assessment can broaden the understanding of local climate trends by (i) reducing existing uncertainties, (ii) providing new information, and (iii) introducing unforeseen perspectives. The presented study represents a time-efficient and global applicable approach for assessing local dimensions of climate change in data-deficient regions.
    Description: Projekt DEAL
    Keywords: ddc:551.6 ; Climate change ; Pamir Mountains ; Local knowledge ; Perception ; Climate data ; Statistical downscaling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-12
    Description: Existing climate projections and impact assessments in Nepal only consider a limited number of generic climate indices such as means. Few studies have explored climate extremes and their sectoral implications. This study evaluates future scenarios of extreme climate indices from the list of the Expert Team on Sector-specific Climate Indices (ET-SCI) and their sectoral implications in the Karnali Basin in western Nepal. First, future projections of 26 climate indices relevant to six climate-sensitive sectors in Karnali are made for the near (2021–2045), mid (2046–2070), and far (2071–2095) future for low- and high-emission scenarios (RCP4.5 and RCP8.5, respectively) using bias-corrected ensembles of 19 regional climate models from the COordinated Regional Downscaling EXperiment for South Asia (CORDEX-SA). Second, a qualitative analysis based on expert interviews and a literature review on the impact of the projected climate extremes on the climate-sensitive sectors is undertaken. Both the temperature and precipitation patterns are projected to deviate significantly from the historical reference already from the near future with increased occurrences of extreme events. Winter in the highlands is expected to become warmer and dryer. The hot and wet tropical summer in the lowlands will become hotter with longer warm spells and fewer cold days. Low-intensity precipitation events will decline, but the magnitude and frequency of extreme precipitation events will increase. The compounding effects of the increase in extreme temperature and precipitation events will have largely negative implications for the six climate-sensitive sectors considered here.
    Description: Rheinische Friedrich-Wilhelms-Universität Bonn (1040)
    Keywords: ddc:551.6 ; Climate extremes ; ET-SCI ; Climate change impacts ; ClimPACT2 ; Karnali ; Nepal
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-09-12
    Description: Integrating palaeoclimatological proxies and historical records, which is necessary to achieve a more complete understanding of climate impacts on past societies, is a challenging task, often leading to unsatisfactory and even contradictory conclusions. This has until recently been the case for Italy, the heart of the Roman Empire, during the transition between Antiquity and the Middle Ages. In this paper, we present new high-resolution speleothem data from the Apuan Alps (Central Italy). The data document a period of very wet conditions in the sixth c. AD, probably related to synoptic atmospheric conditions similar to a negative phase of the North Atlantic Oscillation. For this century, there also exist a significant number of historical records of extreme hydroclimatic events, previously discarded as anecdotal. We show that this varied evidence reflects the increased frequency of floods and extreme rainfall events in Central and Northern Italy at the time. Moreover, we also show that these unusual hydroclimatic conditions overlapped with the increased presence of “water miracles” in Italian hagiographical accounts and social imagination. The miracles, performed by local Church leaders, strengthened the already growing authority of holy bishops and monks in Italian society during the crucial centuries that followed the “Fall of the Roman Empire”. Thus, the combination of natural and historical data allows us to show the degree to which the impact of climate variability on historical societies is determined not by the nature of the climatic phenomena per se, but by the culture and the structure of the society that experienced it.
    Description: Fondazione Cassa di Risparmio di Lucca
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Keywords: ddc:551.6 ; Precipitation ; Roman Empire ; Miracles ; Social feedbacks ; Cultural change
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-06-20
    Description: The simulation of broad-band (0.1 to 10 + Hz) ground-shaking over deep and spatially extended sedimentary basins at regional scales is challenging. We evaluate the ground-shaking of a potential M 6.5 earthquake in the southern Lower Rhine Embayment, one of the most important areas of earthquake recurrence north of the Alps, close to the city of Cologne in Germany. In a first step, information from geological investigations, seismic experiments and boreholes is combined for deriving a harmonized 3D velocity and attenuation model of the sedimentary layers. Three alternative approaches are then applied and compared to evaluate the impact of the sedimentary cover on ground-motion amplification. The first approach builds on existing response spectra ground-motion models whose amplification factors empirically take into account the influence of the sedimentary layers through a standard parameterization. In the second approach, site-specific 1D amplification functions are computed from the 3D basin model. Using a random vibration theory approach, we adjust the empirical response spectra predicted for soft rock conditions by local site amplification factors: amplifications and associated ground-motions are predicted both in the Fourier and in the response spectra domain. In the third approach, hybrid physics-based ground-motion simulations are used to predict time histories for soft rock conditions which are subsequently modified using the 1D site-specific amplification functions computed in method 2. For large distances and at short periods, the differences between the three approaches become less notable due to the significant attenuation of the sedimentary layers. At intermediate and long periods, generic empirical ground-motion models provide lower levels of amplification from sedimentary soils compared to methods taking into account site-specific 1D amplification functions. In the near-source region, hybrid physics-based ground-motions models illustrate the potentially large variability of ground-motion due to finite source effects.
    Description: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)
    Keywords: ddc:551.22 ; Ground-motion modelling ; Site effects ; Scenario ; Random vibration theory ; Hybrid modelling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-06-14
    Description: For centuries, traditional high-altitude oases in Oman have depended on the cultivation of deciduous fruit trees. This study explores the effects of climate change on winter chill (estimated as Chilling Hours—CH and Chill Portions—CP), a prerequisite to overcoming dormancy and initiating flowering, in three Omani oases. The results are compared with findings from an earlier study which reported a decrease in the numbers of CH in high-elevation oases by an average of 1.2–9.5 CH year−1 between 1983 and 2008. Location-specific weather data were obtained by merging 15 years of in situ recordings with 28 years of observations from an official weather station near the top of the investigated watershed. Between 1991 and 2018, scenarios of the past few decades show chill reductions by 75, 35 and 18% when estimated in CP at the oases of Masayrat ar Ruwajah (1030 m a.s.l.), Qasha’ (1640 m a.s.l.), and Al ‘Ayn (1900 m a.s.l.), respectively. Over the course of the twenty-first century, the lowest-elevation oasis at Masayrat ar Ruwajah is projected to lose virtually all winter chill, whereas, despite significant chill losses, conditions are expected to remain viable for some of the currently grown species in the higher-elevation oases. These projected changes will compromise the cultivation of temperate fruit trees in the near future, affecting the sustainability of Omani oases. Our methods support results from earlier work performed at these locations and provide an updated procedure for assessing climate change effects on temperature-dependent systems.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.6 ; Arabia ; Arid environments, ; Chill requirements ; Fruit production ; Global warming ; Warm winters
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-14
    Description: Weather and climate hazards cause too many fatalities each year. These weather and climate hazards are projected to increase in frequency and intensity due to global warming. Here, we use a disaster database to investigate continentally aggregated fatality data for trends. We also examine whether modes of climate variability affect the propensity of fatalities. Furthermore, we quantify fatality risk by computing effective return periods which depend on modes of climate variability. We find statistically significant increasing trends for heat waves and floods for worldwide aggregated data. Significant trends occur in the number of fatalities in Asia where fatalities due to heat waves and floods are increasing, while storm-related fatalities are decreasing. However, when normalized by population size, the trends are no longer significant. Furthermore, the number of fatalities can be well described probabilistically by an extreme value distribution, a generalized Pareto distribution (GPD). Based on the GPD, we evaluate covariates which affect the number of fatalities aggregated over all hazard types. For this purpose, we evaluate combinations of modes of climate variability and socio-economic indicators as covariates. We find no evidence for a significant direct impact from socio-economic indicators; however, we find significant evidence for the impact from modes of climate variability on the number of fatalities. The important modes of climate variability affecting the number of fatalities are tropical cyclone activity, modes of sea surface temperature and atmospheric teleconnection patterns. This offers the potential of predictability of the number of fatalities given that most of these climate modes are predictable on seasonal to inter-annual time scales.
    Description: Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659
    Description: Deutsche Forschungsgemeinschaft (DE)
    Description: Bundesministerium für Bildung und Forschung https://doi.org/10.13039/501100002347
    Keywords: ddc:551.6 ; Weather ; Disaster ; Global warming ; Extreme events
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-14
    Description: This study focuses on heat stress conditions for dairy cattle production in West Africa under current and future climatic conditions. After testing the accuracy of the dynamically downscaled climate datasets for simulating the historical daily maximum temperature (Tmax) and relative humidity (RH) in West Africa for 50 meteorological stations, we used the dataset for calculating the temperature-humidity index (THI), i.e., an index indicating heat stress for dairy cattle on a daily scale. Calculations were made for the historical period (1981–2010) using the ERA-Interim reanalysis dataset, and for two future periods (2021–2050 and 2071–2100) using climate predictions of the GFDL-ESM2M, HadGEM2-ES, and MPI-ESM-MR Global Circulation Models (GCMs) under the RCP4.5 emission scenario. Here, we show that during the period from 1981 to 2010 for 〉 1/5 of the region of West Africa, the frequency of severe/danger heat events per year, i.e., events that result in significant decreases in productive and reproductive performances, increased from 11 to 29–38 days (significant at 95% confidence level). Most obvious changes were observed for the eastern and southeastern parts. Under future climate conditions periods with severe/danger heat stress events will increase further as compared with the historical period by 5–22% depending on the GCM used. Moreover, the average length of periods with severe/danger heat stress is expected to increase from ~ 3 days in the historical period to ~ 4–7 days by 2021–2050 and even to up to 10 days by 2071–2100. Based on the average results of three GCMs, by 2071–2100, around 22% of dairy cattle population currently living in this area is expected to experience around 70 days more of severe/danger heat stress (compare with the historical period), especially in the southern half of West Africa. The result is alarming, as it shows that dairy production systems in West Africa are jeopardized at large scale by climate change and that depending on the GCM used, milk production might decrease by 200–400 kg/year by 2071–2100 in around 1, 7, or 11%. Our study calls for the development of improved dairy cattle production systems with higher adaptive capacity in order to deal with expected future heat stress conditions.
    Description: African Union Commission
    Keywords: ddc:551.6 ; THI ; Climate change ; Dairy cattle ; West Africa
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    John Wiley & Sons, Inc. | Hoboken, USA
    Publication Date: 2022-08-05
    Description: In‐depth understanding of the potential implications of climate change is required to guide decision‐ and policy‐makers when developing adaptation strategies and designing infrastructure suitable for future conditions. Impact models that translate potential future climate conditions into variables of interest are needed to create the causal connection between a changing climate and its impact for different sectors. Recent surveys suggest that the primary strategy for validating such models (and hence for justifying their use) heavily relies on assessing the accuracy of model simulations by comparing them against historical observations. We argue that such a comparison is necessary and valuable, but not sufficient to achieve a comprehensive evaluation of climate change impact models. We believe that a complementary, largely observation‐independent, step of model evaluation is needed to ensure more transparency of model behavior and greater robustness of scenario‐based analyses. This step should address the following four questions: (1) Do modeled dominant process controls match our system perception? (2) Is my model's sensitivity to changing forcing as expected? (3) Do modeled decision levers show adequate influence? (4) Can we attribute uncertainty sources throughout the projection horizon? We believe that global sensitivity analysis, with its ability to investigate a model's response to joint variations of multiple inputs in a structured way, offers a coherent approach to address all four questions comprehensively. Such additional model evaluation would strengthen stakeholder confidence in model projections and, therefore, into the adaptation strategies derived with the help of impact models.
    Description: A comprehensive evaluation of climate change impact models combining both observation‐based and response‐based strategies.
    Description: This article is categorized under: Climate Models and Modeling 〉 Knowledge Generation with Models Assessing Impacts of Climate Change 〉 Evaluating Future Impacts of Climate Change
    Description: Alexander von Humboldt‐Stiftung http://dx.doi.org/10.13039/100005156
    Description: Engineering and Physical Sciences Research Council http://dx.doi.org/10.13039/501100000266
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-24
    Description: We present the results of seismological and geophysical investigations performed by the “Istituto Nazionale di Geofisica e Vulcanologia” team operating in Amatrice village (Central Italy), in the emergency phases following the Mw 6.0 event of August 24th 2016, that caused severe damage in downtown and surrounding areas. Data from seven seismic stations equipped with both weak and strong motion sensors are analyzed in terms of standard spectral ratio to empirically define amplification function using a bedrock reference site. Ambient vibration spectral ratios between horizontal and vertical component of motion are also evaluated in a large number of sites, spread out in the investigated area, to recover the resonance frequency of the soft soil outcropping layers and to generalize the results obtained by earthquake data. Ambient noise vibration are also used for applying a 2D array approach based on surface waves techniques in order to define the near-surface velocity model and to verify its lateral variation. The results allows to better understand the amplification factors in the investigated area, showing spatial variation of site effects despite of the homogeneous shallow geological condition indicated by the microzonation studies available at moment of the described field campaign. The analysis reveals a diffuse amplification effect which reaches its maximum values in downtown area with a resonant frequency of about 2 Hz. The obtained results were used to integrate the microzonation studies and they can be used for urban planning and reconstruction activities.
    Description: Published
    Description: 5713–5739
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: Amatrice village ; Central Italy 2016–2018 seismic sequence ; Site effects ; Seismic microzonation ; Ambient vibration ; Surface waves techniques ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...