ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques  (29)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
  • 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
  • INGV  (32)
  • Nature Publishing Group  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2021-01-05
    Description: We investigate the rupture history of the three largest magnitude earthquakes of the 1997 Umbria-Marche sequence by inverting GPS, DInSAR and near-source strong motion waveforms. We use the frequency domain inversion procedure proposed by Cotton and Campillo (1995) and calculate the Green s functions for a layered halfspace using the discrete wavenumber and reflectivity methods. We first invert GPS measurements and DInSAR interferograms to image the coseismic slip distribution on the fault planes in a layered half space for the two earthquakes that occurred on September 26, 1997 at 00:33 UTC (Mw = 5.7) and 09:40 UTC (Mw = 6.0) near Colfiorito. We also invert DInSAR interferograms to infer the slip distribution during the subsequent earthquake that occurred on October 14, 1997 at 15:23 UTC (Mw = 5.6) in the SE section of the seismogenic zone near Sellano. We also explore the set of acceptable solutions using a genetic algorithm to have information on the available resolution of geodetic data. The slip models obtained by geodetic data inversion are used to perform a forward modeling of strong motion waveforms for all three events. We adopt a constant rupture velocity of 2.6 km/s and a constant rise time of 1 s. Our results show that these rupture models provide an acceptable fit to recorded waveforms. Finally, we invert the recorded ground displacements, collected during the September 26th 09:40 main shock and the October 14th Sellano earthquake, to constrain the rupture history. We use the geodetic slip distribution as starting model for the iterative inversion procedure. The retrieved rupture models are consistent with those inferred from geodetic data and yield a good fit to recorded seismograms. These rupture models are characterized by a heterogeneous slip distribution and an evident rupture directivity in agreement with previous observations.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: slip history ; waveform inversion ; geodetic data modeling ; Colfiorito earthquakes ; kinematic source models ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 4054312 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-07
    Description: In questo lavoro viene descritta l’installazione di una rete mobile nell’area dei Monti Nebrodi in seguito all’evento del 23-06-2011 di Ml = 4.6 e come tale intervento ha contribuito al miglioramento della localizzazione delle sorgenti sismiche soprattutto nella determinazione della profondità degli eventi. Verranno anche presentati i risultati delle localizzazioni ottenute attraverso l’integrazione dei dati acquisiti durante questa campagna, con quelli della rete sismica permanente dell’INGV-Osservatorio Etneo ( INGV -OE).
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: 1-24
    Description: 4IT. Banche dati
    Description: N/A or not JCR
    Description: open
    Keywords: Rete Sismica Mobile ; Nebrodi ; Sciame ; Localizzazione ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-04
    Description: The identified emissions of abiogenic carbon dioxide, carbon monoxide and methane are generally attributed to volcanic activity or to geochemical processes associated with thermometamorphic effects. In this paper we show another possible abiogenic source of emission, induced by mechanical, and not thermal, stresses. We investigated the mechanochemical production of carbon dioxide and methane when friction is applied to marly-type rock and studied the mechanisms determining the strong CO2 and CH4 emissions observed. A ring mill was used to apply friction and oriented pressure upon a synthetic calcite-clay mixture of varying proportions. We found that the CO2 and CH4 release versus the grinding action has a non-linear trend reflecting the behaviour of decreasing crystallinity, which indicates a close link between crystallinity and gas production. For the CO2 emission, we propose a release mechanism connected with the friction-induced fractures and the increase in structural disorders induced by creep in the lattice. The CH4 emission could be explained by a Sabatier reaction in which CO2 and hydrogen are involved to form CH4 and water.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: gas geochemistry ; earthquake precursors ; greenhouse gases ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 852704 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-11-04
    Description: Returning to the old problem of observed rotation effects, we present the recording system and basic elements of the theory related to the rotation fi eld and its association with seismic waves. There can be many different causes leading to observed/recorded rotation effects; we can group them as follows: generation of micro-displacement motion due to asymmetry of source processes and/or due to interaction between seismic body/surface waves and medium structure; interaction between incident seismic waves and objects situated on the ground surface. New recording techniques and advanced theory of deformation in media with defects and internal (e.g., granular) structure make it possible to focus our attention on the fi rst group, related to microdisplacement motion recording, which includes both rotation and twist motions. Surface rotations and twists caused directly by the action of emerging seismic waves on some objects situated on the ground surface are considered here only in the historical aspects of the problem. We present some examples of experimental results related to recording of rotation and twist components at the Ojcow Observatory, Poland, and L'Aquila Observatory, Italy, and we discuss some prospects for further research.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: rotation seismograph ; asymmetric stresses ; defect density ; self-rotation nuclei ; rotation and twist motions ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 625313 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-04
    Description: During the 6th September 2002 earthquake the highest damage level in Palermo was observed in the SE sector. This is a recent urbanization area where reinforced concrete structures predominate. A detailed analysis of soil properties in Palermo was carried out by City-GIS to investigate a possible role of nearsurface geology on earthquake effects. City-GIS is a tool dedicated to natural hazard evaluation in urban areas. The availability of high density of well log data (stratigraphic and geotechnical) allowed a realistic modeling of surface geology and physical-mechanical properties that control the seismic response. In wide zones of the above mentioned sector of Palermo, outcropping terrains are composed of thin calcarenite layers, lying above remarkably thick siltyclayey sands that overlay the Numidian Flysch, commonly considered the bedrock of Quaternary sediments. Since silty-clayey sands feature greater deformability properties (Young's modulus) and smaller resistance properties (undrained cohesion and shear resistance angle) than Numidian Flysch, these zones of the SE sector exhibit high values of the acoustic impedance contrast. Moreover, a quite wide portion of the study area, crossed by the Oreto River, is characterized by very thick alluvial deposits. Here, the significant lateral variations of the lithostratigraphic geometry may be an additional cause of strong site effects.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: GIS ; seismic response ; site effects ; Palermo ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3688182 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-11-04
    Description: A review of the past and present instrumentation at Ebre Observatory seismological station (EBR) is presented in this work. In order to assess the quality of EBR from the point of view of modern seismic instrumentation site requirements, the noise conditions at EBR are also investigated by means of velocity power spectral density analysis in the frequency band 0.01〈 f 〈15 Hz by exploiting the three component broadband and digital data processing current capability. A correlation between noise levels and meteorological conditions at the site is observed, using the data of a complete meteorological station located a few tens of meters from the seismic cave. Results show that for long periods ( f 〈 0.04 Hz) and wind speeds ranging from 0 to 15.5 m/s, seismic noise levels may vary up to 45 dB for the horizontal components. These variations are related to tilts due to wind-generated pressure fl uctuations. Secondly, the seasonal variation of noise levels at the frequency band 0.04 〈 f 〈 0.3 Hz is characterized, obtaining that the amplitude of the seasonal variation is higher for secondary (up to 52 dB) than for primary (up to 44 dB) microseisms. On the other hand, a seasonal variation of the frequency of the three-component main noise peak is also suggested in this site and its variation is opposite to the velocity power spectral density amplitude evolution. Finally, a correlation between wind speed and seismic background noise is also observed at high frequencies.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: EBR station ; instrumentation ; seismic noise ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 6622443 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-11-04
    Description: Recent seismological studies contribute to better understand the first order characteristics of earthquake occurrence in Italy, identifying the potential sites for moderate to large size earthquakes. Ad hoc passive seismic experiments performed in these areas provide information to focus on the location and geometry of the active faults more closely. This information is relevant for assessing seismic hazard and for accurately constraining possible ground shaking scenarios. The area around the Città di Castello Basin, in the Northern Apennines (Central Italy), is characterized by the absence of instrumental seismicity (M 〉 2.5), it is adjacent to faults ruptured by recent and historical earthquakes. To better understand the tectonics of the area, we installed a dense network of seismic stations equipped with broadband and short period seismometers collecting data continuously for 8 months (October 2000-May 2001). The processing of ~ 900 Gbyte of data revealed a consistent background seismicity consisting of very low magnitude earthquakes (ML 〈 3.2). Preliminary locations of about 2200 local earthquakes show that the area can be divided into two regions with different seismic behaviour: an area to the NW, in between Sansepolcro and Città di Castello, where seismicity is not present. An area toward the SE, in between Città di Castello, Umbertide and Gubbio, where we detected a high microseismicity activity. These findings suggest a probable different mechanical behaviour of the two regions. In the latter area, the seismicity is confined between 0 and 8 km of depth revealing a rather well defined east-dipping, low angle fault 35 km wide that cuts through the entire upper crust down to 12-15 km depth. Beside an apparent structural complexity, fault plane solutions of background seismicity reveal a homogeneous pattern of deformation with a clear NE-SW extension.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: microseismicity ; low-angle normalfault ; seismic gap ; seismic hazard ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1636129 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-04
    Description: We examine here a number of parameters that define the source of the earthquake that occurred on 23rd July 1930 in Southern Italy (in the Irpinia region). Starting from the source models proposed in different studies, we have simulated the acceleration field for each hypothesized model, and compared it with the macroseismic data. We then used the hybrid stochastic-deterministic technique proposed by Zollo et al. (1997) for the simulation of the ground motion associated with the rupture of an extended fault. The accelerations simulated for several sites were associated with the intensities using the empirical relationship proposed by Trifunac and Brady (1975), before being compared with the available data from the macroseismic catalogue. A good reproduction of the macroseismic field is provided by a normal fault striking in Apenninic direction (approximately NW-SE) and dipping 55° toward the SW.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: 1930 Irpinia earthquake ; ground motion simulation ; kinematic source model ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2295606 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-04
    Description: A site response experiment was performed in the basin of Città di Castello (a small town in Central Italy) in May 2001. This study is part of a project on the evaluation of seismic hazard in seismogenic areas funded by the Gruppo Nazionale Difesa dai Terremoti (GNDT). The experiment consisted of a dense fixed transect configuration with most of the stations recording in continuous mode, and several ambient noise measurements both in single station and in array configuration spread over the investigated area. The dense transect was composed of 26 seismic stations in a crosswise configuration with a maximum inter-station distance of 250 m. The stations were deployed in the southern part of the basin, from the eastern bedrock outcrop to the western edge, across the town. About 70 earthquakes were recorded during 10 days of deployment, generally low magnitude or regional events. We located 23 earthquakes and 17 of them were located using the waveform similarity approach at 4 stations outside the target area. These 4 stations were part of a dense temporary seismic network involved in a previous experiment of the same project, aimed at performing a high-resolution picture of the local seismicity. Delay analysis on the recorded waveforms allowed us to infer the basin geometry at depth and estimate the S-wave velocity of sediments. Moreover, we evaluated relative site response along the E-W transect by performing a standard spectral ratio. Amplification factors up to 9 are found inside the basin; at frequencies above 5 Hz stations closer to the edges show higher amplification, whereas stations located in the middle of the basin, where the alluvial sediments are thicker (CD11-CD14), show higher amplification below 5 Hz. We considered the average amplification in two frequency bands (1-5 Hz and 5-10 Hz), representative of the resonance frequency for 2-3 storey buildings and 1 storey houses,respectively. Our results suggest that the potential hazard for 2-3 storey buildings is higher in the center of the basin (amplification factor up to 6), and for 1 storey houses is higher at the edges (amplification factor up to 5).
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: dense seismic array ; weak motion ; ambient noise ; basin geometry ; urban area ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2579966 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-11-04
    Description: We present a seismotectonic study of the Amatrice-Campotosto area (Central Italy) based on an integrated analysis of minor earthquake sequences, geological data and crustal rheology. The area has been affected by three small-magnitude seismic sequences: August 1992 (M=3.9), June 1994 (M=3.7) and October 1996 (M=4.0). The hypocentral locations and fault plane solutions of the 1996 sequence are based on original data; the seismological features of the 1992 and 1994 sequences are summarised from literature. The active WSWdipping Mt. Gorzano normal fault is interpreted as the common seismogenic structure for the three analysed sequences. The mean state of stress obtained by inversion of focal mechanisms (WSW-ENE-trending deviatoric tension) is comparable to that responsible for finite Quaternary displacement, showing that the stress field has not changed since the onset of extensional tectonics. Available morphotectonic data integrated with original structural data show that the Mt. Gorzano Fault extends for ~28 km along strike. The along-strike displacement profile is typical of an isolated fault, without significant internal segmentation. The strong evidence of late Quaternary activity in the southern part of the fault (with lower displacement gradient) is explained in this work in terms of displacement profile readjustment within a fault unable to grow further laterally. The depth distribution of seismicity and the crustal rheology yield a thickness of ~15 km for the brittle layer. An area of ~530 km2 is estimated for the entire Mt. Gorzano Fault surface. In historical times, the northern portion of the fault was probably activated during the 1639 Amatrice earthquake (I = X, M~ 6.3), but this is not the largest event we expect on the fault. We propose that a large earthquake might activate the entire 28 km long Mt. Gorzano Fault, with an expected Mmax up to 6.7.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: seismic hazard ; normal faulting ; seismicity ; seismotectonics ; active stress ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2636258 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...