ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
  • Etna
  • Elsevier Science Limited  (11)
  • Geological Society of America  (5)
Collection
Keywords
Years
  • 1
    Publication Date: 2022-06-14
    Description: The eastern flank of the Mount Etna stratovolcano is affected by extension and is slowly sliding eastward into the Ionian Sea. The Pernicana fault system forms the border of the northern part of this sliding area. It consists of three E-W–oriented fault sectors that are seismically active and characterized by earthquakes up to 4.7 in magnitude (M) capable of producing ground rupture and damage located mainly along the western and central sectors, and by continuous creep on the eastern sector. A new topographic study of the central sector of the Pernicana fault system shows an overall bell-shaped profile, with maximum scarp height of 35 m in the center of the sector, and two local minima that are probably due to the complex morphological relation between fault scarp and lava flows. We determined the ages of lava flows cut by the Pernicana fault system at 12 sites using cosmogenic 3He and 40Ar/39Ar techniques in order to determine the recent slip history of the fault. From the displacementage relations, we estimate an average throw rate of ~2.5 mm/yr over the last 15 k.y. The slip rate appears to have accelerated during the last 3.5 k.y., with displacement rates of up to ~15 mm/yr, whereas between 3.5 and 15 ka, the throw rate averaged ~1 mm/yr. This increase in slip rate resulted in significant changes in seismicity rates, for instance, decreasing the mean recurrence time of M ≥ 4.7 earthquakes from ~200 to ~20 yr. Based on empirical relationships, we attribute the variation in seismic activity on the Pernicana fault system to factors intrinsic to the system that are likely related to changes in the volcanic system. These internal factors could be fault interdependencies (such as those across the Taupo Rift, New Zealand) or they could represent interactions among magmatic, tectonic, and gravitational processes (e.g., Kīlauea volcano, Hawaii). Given their effect on earthquake recurrence intervals, these interactions need to be fully assessed in seismic hazard evaluations.
    Description: Published
    Description: 304-317
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: open
    Keywords: Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-12
    Description: tGeological studies and morphological analysis, compared with seismological and geodetic data, suggestthat a compressive regime currently occurs at crustal depth in the western sector of Mt. Etna, accommo-dated by shallow thrusting and folding at the front of the chain, south of the volcanic edifice. In particular,a large WSW-ENE trending anticline, interpreted as detachment fold, is growing west and north of Cata-nia city (the Catania anticline). Geological data suggest that during the last 6000 years the frontal foldhas been characterized by uplift rates of ∼6 mm/yr along the hinge, consistent with the interferometricdata (10 mm/yr) recorded in the last 20 years. Moreover, a NNW-SSE oriented axis of compression hasbeen obtained by seismological data, consistent with GPS measurements over the last 20 years whichhave revealed a shortening rate of ∼5 mm/yr along the same direction. Besides the activity related to thevolcanic feeding system, the seismic pattern under the Mt. Etna edifice can be certainly related to theregional tectonics. The compressive stress is converted into elastic accumulation and then in earthquakesalong the ramps beneath the chain, whereas on the frontal area it is accommodated by aseismic defor-mation along an incipient detachment within the clayish foredeep deposits. The high rate of shorteningat the aseismic front of the chain, suggests a greater “seismic efficiency” in correspondence of ramps atthe rear.
    Description: Published
    Description: 32-41
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; sicilian basal thrust ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-18
    Description: Viscosity (η), glass transition (Tg) and heat capacity (Cp) of Etna trachybasalt and Fondo Riccio latite (Phlegrean Fields, Italy)were determined at lowand high temperatures for dry, hydrous and CO2 bearing samples.High temperature experiments have been performed in the range of 1499 to 1700 K by concentric cylindermeasurements, while low temperature experiments were carried out in the interval between 633 and 1093 K using the micropenetration technique. Glass transition temperature and glassy and liquid heat capacitieswere investigated using differential scanning calorimetry (DSC) up to 955 K. The H2O content in themelts ranged from nominally dry to 6.32 wt.%, while CO2 ranged from 229 to 1907 ppm. We combined low- and high-temperature viscosities and parameterized them by the use of a modified Vogel– Fulcher–Tamman equation,which accommodates the non-Arrhenian temperature dependence ofmelt viscosity. Experimental measurements showthat melt viscosity decreaseswith increasing temperature and water and CO2 contents. For latitic samples at 893 K, the introduction of CO2 (up to 732 ppm) decreases the liquid viscosity up to one order of magnitude with respect to the measured viscosity for H2O-bearing liquid. Moreover, the results of calorimetric measurements indicate that the glass transition temperature decreaseswith increasing volatile content (H2O+CO2). The glass transition temperature decreases by about 25 K by adding up to 1907 ppmof CO2 in the trachybasaltic samples. No appreciable effect on glassy [Cpg (Tg)] and liquid (Cpliq) heat capacities was observed with the addition of water and CO2. Structural and volcanological implications (i.e. volatile speciation and melt fragility) for water and CO2 dissolution in silicate melts are discussed in light of the presented results.
    Description: Published
    Description: 72-86
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: reserved
    Keywords: Viscosity ; glass transition ; Etna ; Phlegrean Fields ; volatiles ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-24
    Description: The reinterpretation of more than 2500 subsurface data, consisting of geoelectric and borehole prospecting undertaken at Mount Etna, allows reconstructing the contour map of the sedimentary basement. This reconstruction highlights a complex asymmetric topography due to the inhomogeneous long-term updoming of the region and the interrelationship between the development of the drainage network and flank instability. These different processes have produced a major morphological difference between the eastern sector, characterised by a 17 km-wide horseshoe-shaped depression, and the other flanks formed by palaeovalleys. The origin of the wide horseshoe-shaped depression can be attributed to the large-scale flank instability processes involving the entire continental margin in the Etna offshore. This depression of the Etna basement was generated by a series of coalescent landslides before the beginning of the eruptive activity of the Timpe phase more than 220 ka ago. This wide depression is the main cause of the flank instability that produced the gravitational slope failures of the Valle del Bove about 10 ka ago. Regarding Mt Etna's geometry, we have estimated a total volume of about 532 km3 that was emplaced during the past 330 ka, resulting in an average rate of volcanic output of 0.0016 km3/a. The reconstruction of the temporal variation of the average eruptive rate highlights a drastic increase of volcanism during the last 100 ka in response to the gradual stabilization of the plumbing system in the Etna region that led to the build-up of the composite stratovolcano structure. The data presented in this paper represent the state of knowledge of the sedimentary basement of Etna, which can be used for future studies aimed at developing a detailed understanding of the deep structure of the volcano's unstable flanks.
    Description: Published
    Description: 46-64
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; Basement ; Stratigraphy ; Morphostructural ; Volcanic output ; Flank instability ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-04-03
    Description: Since January 2011, Mt. Etna volcano has been affected by more than forty paroxysmal eruptions at the summit (New South East Crater; NSEC). On the basis of their very variable duration, seven eruptions have been selected among the twenty-five of 2011–2012 in order to decipher potential differences in their triggering mechanism. Paroxysms have been investigated through a multidisciplinary approach that integrates data from volcanic tremor and petrology (textures and micro-analysis on plagioclase crystals). Our results lead to the conclusion that close relationships exist between the duration of the eruptions and the temporal evolution of the volcanic tremor amplitude, especially during the Strombolian phase preceding the paroxysmal activity. In this regard, we distinguished: 1) paroxysms preceded by long-lasting initial Strombolian phases, characterized by low rate of volcanic tremor amplitude increase; and 2) eruptions preceded by short initial Strombolian phases, showing high rate of volcanic tremor amplitude increase. Based on the pattern of volcanic tremor amplitude increase, the former mainly showed a ramp-shaped morphology, while the latter a bell-shaped trend. Location of the volcanic tremor centroid during the quiescent intervals between the paroxysmal eruptions has highlighted the presence of a magmatic volume at 1–2 km a.s.l. beneath the North East Crater (NEC). During the syn-eruptive Strombolian and lava fountaining phases, the centroid of volcanic tremor migrates below the NSEC. This leads to the consideration that the magma batch residing beneath NEC played an important role in the volcanic activity at NSEC during the considered period. Also the textures and compositional zoning (anorthite and iron variations) in selected plagioclase crystals of the analyzed lavas suggest relations between duration of the paroxysms and dynamics of pre-eruptive magmatic processes at depth. Particularly, two mechanisms have been accounted for triggering of eruptions at the NSEC on the basis of the concordant or discordant behavior of anorthite and iron in plagioclase coupled with disequilibrium textures at the rim. Concordant anorthite and iron increases in plagioclase crystals with sieve-textured rims indicate recharge by more mafic, gas-rich magma. This textural-compositional behavior has been related to long-lasting eruptions, whose volcanic tremor amplitude evolution produced ramp-shaped increase of the volcanic tremor amplitude before the paroxysmal phase. On the contrary, crystalswith sieve-textures at the rim, characterized by increasing iron at rather constant or decreasing anorthite, suggest the prominent role of gas injections into the residing system. In this instance, the compositional behavior has been linked with short-lasting eruptions, whose volcanic tremor amplitude evolution led to a sudden increase of the seismic amplitude before the climax of the eruption. Thus, our work put forward the idea that the evolution and duration of the Strombolian phase preceding the paroxysmal eruptions of 2011–2012 at Mt. Etna are strongly controlled by the eruption triggering mechanism, which can be either gas burst or gas-rich magma recharge.
    Description: Published
    Description: 1–13
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; Volcanic tremor ; Paroxysmal activity ; Plagioclase Texture ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: During May 2001 we acquired 2016 thermal images over an ~8-h-long period for a section of active lava channel on Mount Etna (Italy). We used these to extract surface temperature and heat-loss profi les and thereby calculate core cooling rates. Flow surface temperatures declined from ~1070 K at the vent to ~930 K at 70 m. Heat losses were dominated by radiation (5 × 104 W m2) and convection (~104 W/m2). These compare with a heat gain from crystallization of 6 × 103 W/m2. The imbalance between sinks and sources gives core cooling (δT/δx) of ~110 K/km. However, cooling rate per unit distance also depends on fl ow conditions, where we distinguished: (1) unimpeded, high-velocity (~0.2 m/s) fl ow with low δT/δx (0.3 K/m); (2) unimpeded, low-velocity (~0.1 m/s) fl ow with higher δT/δx (0.5 K/m); (3) waning, insulated fl ow at low velocity (~0.1 m/s) with low δT/δx (0.3 K/m); and (4) impeded fl ow at low velocity (〈0.1 m/s) with higher δT/δx (0.4 K/m). Our data allow us to defi ne three thermal states of fl ow emplacement: insulated, rapid, and protected. Insulated is promoted by the formation of hanging blockages and coherent roofs. During rapid emplacement, higher velocities suppress cooling rates, and δT/δx can be tied to mean velocity (Vmean) by δT/δx = aVmean –b. In the protected case, deeper, narrow channels present a thermally effi cient channel, where δT/δx can be assessed using the ratio of channel width (w) to depth (d) in w/d = aδT/δx–b.
    Description: Published
    Description: 125-146
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: reserved
    Keywords: lava channel ; Etna ; heat loss ; cooling ; viscosity ; velocity ; FLIR ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The Archean western Superior province in Canada is the type area for proposed Archean plate tectonics. Seismic images from this region provide direct evidence for assembly of the craton by terrane accretion and for a large slab of remnant oceanic crust preserved at the base of the crust. This slab, with inferred garnet amphibolite composition, adds a critical piece of evidence to previous suggestions that Archean subduction was at a shallow angle and that some Neoarchean tonalite-trondhjemite-granodiorite suites, distinct from most modern-day suprasubduction magmas, are melts primarily derived directly from subducted slabs.
    Description: LITHOPROBE, Queen's University, Geological Survey of Canada
    Description: Published
    Description: 997–1000;
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Archean ; teconics ; seismic ; subduction ; accretion ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Data from high-density seismic networks deployed between 2000 and 2007 in the north-central Apennines (Italy) yield unprecedented images of an active orogenic wedge. Earthquake foci from the northern Apennines define a Benioff zone deepening westward from the Adriatic foreland down to ~60 km depth below the chain. The seismicity shows that only the lowermost ~10 km of the Adriatic foreland crust is subducted, whereas the uppermost ~20 km is incorporated into the orogenic wedge. Farther west, an aseismic mantle with markedly negative P-wave-velocity (Vp) anomalies is interpreted as asthenosphere flowing toward an Adriatic slab in retrograde motion. Three crustal layers with different Vp and seismicity characteristics are imaged below the northern Apennines: an uppermost 10-km-thick fast layer affected by extensional faulting, a slow layer with diffuse seismicity down to ~15 km depth, and a lowermost fast and aseismic layer resting directly above the asthenosphere. We interpret the latter layer as having formed by anhydrous crust undergoing granulitization, whereas trapped CO2 (either from the underlying granulites or from the subducting Adriatic crust) is inferred to have been responsible for both low Vp and diffuse seismicity in the middle crust. Trapped CO2 is released along the easternmost normal fault systems breaking the Apennine upper crust, consistent with geochemical and seismotectonic evidence. Compressive earthquakes at 20–25 km depth along the external front suggest offscraping of the subducting foreland crust and show that asthenospheric flow represents the primary source of ongoing shortening along the belt front.
    Description: Published
    Description: 95-104
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: N/A or not JCR
    Description: reserved
    Keywords: Northern Apennines ; subduction ; orogenic wedge ; seismology ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We document quantitatively observations of quasi-Love waves obtained at permanent (Italian National Seismic Network) and temporary seismic stations deployed in Italy between 2003 and 2006 (Retreat, CAT/SCAN projects). We analyzed large earthquakes with source parameters that favor quasi-Love wave generation within this time-span, including the Sumatra–Andaman earthquake of 12/26/04. The presence or the absence of the quasi-Love phase is compared to the smoothed anisotropic pattern defined by the numerous SKS splitting measurements obtained in peninsular Italy, and to the Italian upper mantle structure as defined by seismic tomography. The large-scale anisotropic features, responsible for shear-wave splitting and documented also by Pn and surface-wave anisotropy, generally display the correct geometry to explain the scattered quasi-Love waves. Quasi-Love observations do not demand a tilted-axis anisotropic geometry. We argue instead for anisotropy with laterally-variable horizontal symmetry axis in the upper mantle below the Italian peninsula.
    Description: Published
    Description: 26-38
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic anisotropy ; Quasi-Love ; Italy ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: From October 2008 to November 2009, soil CO2, radon and structural field surveys were performed on Mt. Etna, in order to acquire insights into active tectonic structures in a densely populated sector of the south-eastern flank of the volcano, which is involved in the flank dynamics, as highlighted by satellite data (InSAR). The studied area extends about 150 km2, in a sector of the volcano where InSAR results detected several lineaments that were not well-defined from previous geological surveys. In order to validate and better constrain these features with ground data evidences, soil CO2 and soil radon measurements were performed along transects roughly orthogonal to the newly detected faults, with measurement points spaced about 100 m. In each transect, the highest CO2 values were found very close to the lineaments evidenced by InSAR observations. Anomalous soil CO2 and radon values were also measured at old eruptive fractures. In some portions of the investigated area soil gas anomalies were rather broad over transects, probably suggesting a complex structural framework consisting of several parallel volcano-tectonic structures, instead of a single one. Soil gas measurements proved particularly useful in areas at higher altitude on Mt. Etna (i.e. above 900 m asl), where InSAR results are not very informative/ are fairly limited, and allowed recognizing the prolongation of some tectonic lineaments towards the summit of the volcano. At a lower altitude on the volcanic edifice, soil gas anomalies define the active structures indicated by InSAR results prominently, down to almost the coastline and through the northern periphery of the city of Catania. Coupling InSARwith soil gas prospectingmethods has thus proved to be a powerful tool in detecting hidden active structures that do not show significant field evidences.
    Description: This work was funded by the DPC-INGV project “Flank”
    Description: Published
    Description: 27-40
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 ; Radon ; InSAR ; Faults ; Etna ; Volcano-tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...