ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Gravity, Geodesy and Tides  (98)
  • Natural Disasters  (42)
  • Oxford University Press  (140)
  • American Chemical Society
  • 1
    Publication Date: 2017-01-07
    Description: By introducing two types of zenith troposphere delay (ZTD) products in precise point positioning (PPP), we developed the ZTD-corrected PPP and the ZTD-constrained PPP, both of them reduced the PPP convergence time. Both enhanced PPP methods are examined by global empirical ZTD models and regional ZTD corrections. For global ZTD models, we verified that ZTD-corrected PPP will deviate the positioning results, while ZTD-constrained PPP could produce unbiased estimations. Therefore, the latter is utilized to study the performance of global ZTD models (ITG, GPT2w, GZTD and UNB3m). After numerous experiments, we found that the performance of ZTD models was positively related to the real ZTD accuracy, and we proposed a universal tropospheric stochastic model 2SQR(9rms) which denotes double the square of nine times ZTD rms, to constrain ZTD in PPP. The proposed model subsequently was validated by real-time static and kinematic ZTD-constrained PPP on the premise that the ZTD rms on every station was known. Compared with traditional PPP, in static PPP, the number of improved stations is increased by 15.5 per cent (ITG), 14.4 per cent (GPT2w), 11.1 per cent (GZTD) and 8.3 per cent (UNB3m). For kinematic PPP, PPP constrained by ITG model still had the best performance, the number of improved stations is increased by 14.4 per cent, after 30 min of initialization time, 13.4 cm east, 13.4 cm north and 11.7 cm up positioning accuracy was obtained, compared with 15.3 cm east, 15.3 cm north and 14.3 cm up accuracy by traditional PPP. In addition, experiments using regional ZTD corrections to enhance real-time PPP showed that both ZTD-corrected PPP and ZTD-constrained PPP can notably reduce the convergence time on the vertical component (within 15 cm).
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-05
    Description: The system of prior appropriation in the Western Unites States prioritizes property rights for water based on the establishment of beneficial use, creating a hierarchy where rights initiated first are more secure. I estimate the demand for security in water rights through their capitalization in agricultural property markets in the Yakima River Basin, a major watershed in Washington State. All water rights are satisfied in an average year, so the relative value of secure property rights is a function of water supply volatility and the costs of droughts are predominantly born by those with weak rights. In aggregate, security in water rights does not capitalize into property values at the irrigation district level; however, there is heterogeneity in the premium for secure water rights. The lack of a premium for district-level water security is robust to a variety of econometric methods to account for correlated district unobservables, and the null result produces an economically significant upper bound on the value to water security for the district. The ability for farmers to adapt to water supply volatility, as well as expectations about water markets and government infrastructure investment, are leading explanations for the lack of an aggregate premium. These explanations are supported by the pattern of heterogeneity in the water security premium.
    Keywords: Q15 - Land Ownership and Tenure ; Land Reform ; Land Use ; Irrigation, Q21 - Demand and Supply, Q24 - Land, Q25 - Water, Q54 - Climate ; Natural Disasters ; Global Warming
    Print ISSN: 0002-9092
    Electronic ISSN: 1467-8276
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-01
    Description: We study fluctuations in the degree-2 zonal spherical harmonic coefficient of the Earth's gravity potential, C 20 , over the period 2003–2015. This coefficient is related to the Earth's oblateness and studying its temporal variations, C 20 , can be used to monitor large-scale mass movements between high and low latitude regions. We examine C 20 inferred from six different sources, including satellite laser ranging (SLR), GRACE and global geophysical fluids models. We further include estimates that we derive from measured variations in the length-of-day (LOD), from the inversion of global crustal displacements as measured by GPS, as well as from the combination of GRACE and the output of an ocean model as described by Sun et al. We apply a sequence of trend and seasonal moving average filters to the different time-series in order to decompose them into an interannual, a seasonal and an intraseasonal component. We then perform a comparison analysis for each component, and we further estimate the noise level contained in the different series using an extended version of the three-cornered-hat method. For the seasonal component, we generally obtain a very good agreement between the different sources, and except for the LOD-derived series, we find that over 90 per cent of the variance in the seasonal components can be explained by the sum of an annual and semiannual oscillation of constant amplitudes and phases, indicating that the seasonal pattern is stable over the considered time period. High consistency between the different estimates is also observed for the intraseasonal component, except for the solution from GRACE, which is known to be affected by a strong tide-like alias with a period of about 161 d. Estimated interannual components from the different sources are generally in agreement with each other, although estimates from GRACE and LOD present some discrepancies. Slight deviations are further observed for the estimate from the geophysical models, likely to be related to the omission of polar ice and groundwater changes in the model combination we use. On the other hand, these processes do not seem to play an important role at seasonal and shorter timescales, as the sum of modelled atmospheric, oceanic and hydrological effects effectively explains the observed C 20 variations at those scales. We generally obtain very good results for the solution from SLR, and we confirm that this well-established technique accurately tracks changes in C 20 . Good agreement is further observed for the estimate from the GPS inversion, showing that this indirect method is successful in capturing fluctuations in C 20 on scales ranging from intra- to interannual. Obtaining accurate estimates from LOD, however, remains a challenging task and more reliable models of atmospheric wind fields are needed in order to obtain high-quality C 20 , in particular at the seasonal scale. The combination of GRACE data and the output of an ocean model appears to be a promising approach, particularly since corresponding C 20 is not affected by tide-like aliases, and generally gives better results than the solution from GRACE, which still seems to be of rather poor quality.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-12-22
    Description: We consider a new approach to both the forward and inverse problems in post-seismic deformation. We present a method for forward modelling post-seismic deformation in a self-gravitating, heterogeneous and compressible earth with a variety of linear and nonlinear rheologies. We further demonstrate how the adjoint method can be applied to the inverse problem both to invert for rheological structure and to calculate the sensitivity of a given surface measurement to changes in rheology or time-dependence of the source. Both the forward and inverse aspects are illustrated with several numerical examples implemented in a spherically symmetric earth model.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-07
    Description: Much attention has been paid to the potential role that climate and food security has on conflict, especially in the Middle East. However, there has been little critical examination beyond the statistical correlation of events, which demonstrates whether a causal link exists and if it does, what can be done about it. This paper explores the conceptual linkages between food and conflict and attempts to draw attention to the opportunity cost of conflict as the nexus for decision-making in this context.
    Keywords: D74 - Conflict ; Conflict Resolution ; Alliances, Q18 - Agricultural Policy ; Food Policy, Q54 - Climate ; Natural Disasters ; Global Warming
    Print ISSN: 2040-5790
    Electronic ISSN: 2040-5804
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-07
    Description: What are second-generation (2G) biofuel technologies worth to global society? A dynamic, economic model is used to assess the impact that introducing 2G biofuels technology has on crops, livestock, biofuels, forestry, and environmental services, as well as greenhouse gas emissions. Under baseline conditions, this amounts to $64 billion and is $84 billion under the optimistic technology case, suggesting that investing in 2G technology could be appropriate. Under greenhouse gas regulation, global valuation more than doubles to $139 and $174 billion, respectively. A flat energy price scenario eliminates the value of 2G technology to society.
    Keywords: Q15 - Land Ownership and Tenure ; Land Reform ; Land Use ; Irrigation, Q42 - Alternative Energy Sources, Q54 - Climate ; Natural Disasters ; Global Warming
    Print ISSN: 2040-5790
    Electronic ISSN: 2040-5804
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-04
    Description: We have developed a method to estimate the geometry, location and densities of anomalies coming from 2-D gravity data based on compact gravity inversion technique. Compact gravity inversion is simple, fast and user friendly but severely depends on the number of model parameters, that is, by increasing the model parameters, the anomalies tend to concentrate near the surface. To overcome this ambiguity new weighting functions based on density contrast, depth, and compactness models have been introduced. Variable compactness factors have been defined here to get either a sharp or a smooth model based on the depth of the source or existence of prior information. Depth weighting derived from one station of gravity data whereas the effect of gravity data is 2-D and 3-D. To compensate this limitation an innovating weighting function namely kernel function has been introduced which multiplies with weight and compactness matrixes to yield a general model weighting function. The method is tested using three different sets of synthetic examples: a body at various depths (20, 40, 80 and 140 m), two bodies at the same depth but various distances to estimate lateral resolution and three bodies with negative and positive density contrast in different depths. The method is also applied to three real gravity data of Woodlawn massive sulphide body, sulphides mineralization of British Colombia and iron ore body of Missouri. The method produces solutions consistent with the known geologic attributes of the gravity sources, illustrating its potential practicality.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-11-20
    Description: In a pioneering study, Wahr & Bergen developed the widely adopted, pseudo-normal mode framework for predicting the impact of anelastic effects on the Earth's body tides. Lau et al. have recently derived an extended normal mode treatment of the problem (as well as a minor variant of the theory known as the direct solution method) that makes full use of theoretical developments in free oscillation seismology spanning the last quarter century and that avoids a series of assumptions and approximations adopted in the traditional theory for predicting anelastic effects. There are two noteworthy differences between these two theories: (1) the traditional theory only considers perturbations to the eigenmodes of an elastic Earth, whereas the new theory augments this set of modes to include the relaxation modes that arise in anelastic behaviour; and (2) the traditional theory approximates the complex perturbation to the tidal Love number as a scaled version of the complex perturbation to the elastic moduli, whereas the new theory computes the full complex perturbation to each eigenmode. In this study, we highlight the above differences using a series of synthetic calculations, and demonstrate that the traditional theory can introduce significant error in predictions of the complex perturbation to the Love numbers due to anelasticity and the related predictions of tidal lag angles. For the simplified Earth models we adopt, the computed lag angles differ by ~20 per cent. The assumptions in the traditional theory have important implications for previous studies that use model predictions to correct observables for body tide signals or that analyse observations of body tide deformation to infer mantle anelastic structure. Finally, we also highlight the fundamental difference between apparent attenuation (i.e. attenuation inferred from observations or predicted using the above theories) and intrinsic attenuation (i.e. the material property investigated through experiments), where both are often expressed in terms of lag angles or Q –1 . In particular, we demonstrate the potentially significant (factor of two or more) bias introduced in estimates of Q –1 and its frequency dependence in studies that have treated Q –1 determined from tidal phase lags or measured experimentally as being equal. The observed or theoretically predicted lag angle (or apparent Q –1 ) differs from the intrinsic, material property due to inertia, self-gravity and effects associated with the energy budget. By accounting for these differences we derive, for a special case, an expression that accurately maps apparent attenuation predicted using the extended normal mode formalism of Lau et al. into intrinsic attenuation. The theory allows for more generalized mappings which may be used to robustly connect observations and predictions of tidal lag angles to results from laboratory experiments of mantle materials.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-11-19
    Description: Traditional processing of Global Navigation Satellite System (GNSS) data using dedicated scientific software has provided the highest levels of positional accuracy, and has been used extensively in geophysical deformation studies. To achieve these accuracies a significant level of understanding and training is required, limiting their availability to the general scientific community. Various online GNSS processing services, now freely available, address some of these difficulties and allow users to easily process their own GNSS data and potentially obtain high quality results. Previous research into these services has focused on Continually Operating Reference Station (CORS) GNSS data. Less research exists on the results achievable with these services using large campaign GNSS data sets, which are inherently noisier than CORS data. Even less research exists on the quality of velocity fields derived from campaign GNSS data processed through online precise point positioning services. Particularly, whether they are suitable for geodynamic and deformation studies where precise and reliable velocities are needed. In this research, we process a very large campaign GPS data set (spanning 10 yr) with the online Jet Propulsion Laboratory Automated Precise Positioning Service. This data set is taken from a GNSS network specifically designed and surveyed to measure deformation through the central North Island of New Zealand. This includes regional CORS stations. We then use these coordinates to derive a horizontal and vertical velocity field. This is the first time that a large campaign GPS data set has been processed solely using an online service and the solutions used to determine a horizontal and vertical velocity field. We compared this velocity field to that of another well utilized GNSS scientific software package. The results show a good agreement between the CORS positions and campaign station velocities obtained from the two approaches. We discuss the implications of these results for how future GNSS campaign field surveys might be conducted and how their data might be processed.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-11-19
    Description: In this paper we present the potential of a new compact superconducting gravimeter (GWR iGrav) designed for groundwater monitoring. At first, 3 yr of continuous gravity data are evaluated and the performance of the instrument is investigated. With repeated absolute gravity measurements using a Micro-g Lacoste FG5, the calibration factor (–894.8 nm s –2 V –1 ) and the long-term drift of this instrument (45 nm s –2 yr –1 ) are estimated for the first time with a high precision and found to be respectively constant and linear for this particular iGrav. The low noise level performance is found similar to those of previous superconducting gravimeters and leads to gravity residuals coherent with local hydrology. The iGrav is located in a fully instrumented hydrogeophysical observatory on the Durzon karstic basin (Larzac plateau, south of France). Rain gauges and a flux tower (evapo-transpiration measurements) are used to evaluate the groundwater mass balance at the local scale. Water mass balance demonstrates that the karst is only capacitive: all the rainwater is temporarily stored in the matrix and fast transfers to the spring through fractures are insignificant in this area. Moreover, the upper part of the karst around the observatory appears to be representative of slow transfer of the whole catchment. Indeed, slow transfer estimated on the site fully supports the low-flow discharge at the only spring which represents all groundwater outflows from the catchment. In the last part of the paper, reservoir models are used to characterize the water transfer and storage processes. Particular highlights are done on the advantages of continuous gravity data (compared to repeated campaigns) and on the importance of local accurate meteorological data to limit misinterpretation of the gravity observations. The results are complementary with previous studies at the basin scale and show a clear potential for continuous gravity time-series assimilation in hydrological simulations, even on heterogeneous karstic systems.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...