ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 17 (2). pp. 397-407.
    Publication Date: 2017-02-14
    Description: Volcanic ash layers, which represent the products of volcanic activity within the ocean basins, are common in sedimentary cores taken near Cobb Seamount and on the actively spreading Gorda and Juan de Fuca Ridges. Petrographic and chemical analyses of the glass shards from these deposits have revealed that they are unaltered and are as chemically representative of local volcanic events as are the glassy margins of fresh pillow basalts recovered from the same areas. The presence of unhydrated glass shards in samples as old as 3.8 my is in direct conflict with published hydration rates of both terrestrial and submarine volcanic glasses. A study of a sequence of ash layers from Cobb Seamount, which spans in time much of the Seamount's history, indicates that the volcanic products from Cobb Seamount have had alkaline affinities and that its eruptions have been becoming progressively enriched in Al2O3. Recent experimental petrological evidence and the data on the chemical compositions of Cobb Seamount and the adjacent Juan de Fuca Ridge magmas are in agreement with the hypothesis that magmas are being generated at progressively greater depths beneath Cobb Seamount as it migrates away from the Juan de Fuca Ridge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Palaeogeography, Palaeoclimatology, Palaeoecology, 13 (3). pp. 203-213.
    Publication Date: 2016-04-08
    Description: Four palaeogeographical reconstructions are presented for the southern Cape covering the period Late Permian to Late Cretaceous. This time spans the commencement to an advanced stage of breakup of Gondwanaland, during which the area moved from a mid-continental, high latitude, to an ocean-dominated, middle latitude position. These movements can be traced in facies changes and erosional cycles associated with the rift between West Gondwana and Antarctica (proto southwest Indian Ocean) and the later rift between South America and Africa (proto southeast Atlantic Ocean).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine Geology, 15 (1). pp. 1-23.
    Publication Date: 2016-04-15
    Description: The Agulhas Bank, which forms the continental margin on the southern tip of Africa, consists of a thick Meso-Cainozoic sedimentary sequence (up to 6.2 km) resting on and behind pre-Mesozoic continental acoustic basement. The stratigraphy of this sequence is outlined and its history and facies variations mentioned where they are known. Refraction seismic velocity and bottom sample data indicate a basic three-fold subdivision of the Mesozoic sequence, which can be correlated with the onshore succession in the Algoa Basin. It is separated by a major hiatus from the Cainozoic sediments, which consist of a Palaeogene and Neogene sequence subdivided by another well-defined level of erosion. Various formations within the Cainozoic are defined and named. An outline of the bathymetry of the eastern Agulhas Bank is also given.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research and Oceanographic Abstracts, 18 (2). pp. 179-191.
    Publication Date: 2016-09-22
    Description: A study is described which attempts to obtain information about the vertical correlation of ocean currents at frequencies higher than inertial. Current velocity and temperature data for sensor separations of 4–12 m were taken with a mooring at ‘Site D’. The coherence and phase spectra for velocity component pairs reveals that motions are rotational at low frequencies. A cut-off frequency exists above which coherence drops to low values. The limiting frequency coincides with the minimum Väisälä frequency of the total water column. These cross-spectral properties support the assumption that the motion in this frequency range is governed by internal wave dynamics. The coherence and phase spectra of temperature pairs indicate that a field of temperature structure is superimposed on the mean field which is weakly correlated to the field of motion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research and Oceanographic Abstracts, 21 (1). pp. 37-46.
    Publication Date: 2018-03-08
    Description: When determining vertical velocity spectra from temperature time series and the mean vertical temperature gradient, restrictions may arise friom the existence of fine-structre. Phillips (1971) and Garrett and Munk (1971_ have shown that the fine-structure contamination of internal gravity wave spectra can be written as a function of some statistical properties of the internal wave field and the vertical wave number spectrum of the fine-structure. A consistent set of current and temperature data was obtained during an experiment at Site D to study this problem. The wave number spectrum of the vertical temperature fine-structure and the apparent frequently spectrum of internal waves are determined from these data. In contrast to the asasumptions in the above models, our fine-structure data imply a wave number spectrum proportional to (wave number)−3 in the range which is important here. Using the above set of data, a model is suggested to describe the effect of fine-structure on vertical velocity spectra computed with the mean vertical temperature gradient. It indicates a maximum fine-structure contamination of the true frequency spectrum of internal gravity waves in the middle of the internal wave band, with less contamination at low and high frequencies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Geoforum, 3 (3). pp. 73-74.
    Publication Date: 2016-06-08
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research and Oceanographic Abstracts, 21 (8). pp. 597-610.
    Publication Date: 2016-09-22
    Description: An experiment is described which was aimed at testing assumptions and predictions of the internal wave model suggested by Garrett and Munk (1972). Two moorings were set at a depth of 2660 m with a horizontal separation of 920 m only. The results of current and temperature measurements on these moorings indicate that the field of motion is probably horizontally isotropic in the inertio-gravitational wave band. The limiting frequency for horizontal coherence is three times the frequency predicted by the theoretical model. The phase of the vertical coherence is stable over a wide frequency range and the coherence decreases towards higher frequencies. This may be due to coherent motion contaminated by uncorrelated noise at high frequencies. The results are basically in agreement with the theoretical model when taking a number of modes below 10.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research and Oceanographic Abstracts, 17 (3). pp. 627-631.
    Publication Date: 2016-05-13
    Description: Typical results of continuous temperature-salinity measurements from stations west of Gibraltar are presented. Special features of the structure of the Mediterranean Water in this area in relation to the corresponding turbulent mixing and salt-fingering process are discussed: the two maxima in the vertical profiles, the variation in time of small-scale phenomena, and the step-like structure at the lower boundary of the Mediterranean Water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Elsevier
    In:  Geochimica et Cosmochimica Acta, 37 (9). pp. 2173-2190.
    Publication Date: 2019-03-07
    Description: Two thousand and twenty well-characterized coral specimens from 17 localities have been analyzed for Sr. Seventy-three genera and subgenera, mostly hermatypic scleractinians, are represented. For some genera, specimens living in surface reef environments are compared with those from 18.3 m depths on the same reefs. Growth rates for some species have also been measured at these depths at one of the sampling sites. Skeletal strontium for a given genus decreases with increasing water temperature, a relationship which previously eluded detection. Aragonite deposited by corals living on the reef at a depth of 18.3 m contains more strontium than the skeletal aragonite of the same coral genera from shallow-water, surface environments. Quantitative treatment of the data for Acropora, one of the most abundant and widely distributed of the reef-building corals, suggests that the observed strontium variations may reflect variations in the rate of skeletal calcification, rather than direct dependence upon temperature or water depth. There is evidence for ‘species effects’, apparently unrelated to growth rate differences, in that certain coral genera are consistently enriched or depleted in skeletal strontium content relative to other genera living in the same reef environments under identical ambient conditions. Temperature, salinity, water depth, seawater composition, and/or other such parameters may in part determine the levels of trace element concentration in carbonates deposited by corals and other marine invertebrates, but it would appear that these variables more directly affect physiological processes which in turn control skeletal chemistry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-04-15
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...