ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: The Photogrammetric Appendage Structural Dynamics Experiment (PASDE) is a Hitchhiker payload scheduled to fly as part of the International Space Station (ISS) Phase-1 flight program to the Russian Space Station Mir. The objective of the first flight of PASDE on STS-74 is to obtain video images of the Mir Kvant-2 solar array response to various structural dynamic excitation events. This experiment will demonstrate the use of photogrammetric techniques for on-orbit structural dynamics measurements. Photogrammetric measurements will provide a low cost alternative to appendage mounted accelerometers to the ISS program. The PASDE experiment hardware consists of three instruments each containing two video cameras, two video tape recorders, a modified video signal time inserter, and associated avionics boxes. The instruments were designed and built at the NASA Langley Research Center, and are integrated into standard Hitchhiker canisters at the NASA Goddard Space Flight Center. The Hitchhiker canisters are then installed into the Space Shuttle cargo bay in locations selected to achieve good video coverage and photogrammetric geometry. The measurement resolution of the instruments is expected to be on the order of 0.25 cm (0.1 in.).
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Goddard Space Flight Center, The 1995 Shuttle Small Payloads Symposium; p 73-82
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: The Boeing Company, under contract to the Electric Power Research Institute (EPRI), has completed a test program on the Mod-2 wind turbines at Goodnoe Hills, Washington. The objectives were to update fatigue load spectra, discern site and machine differences, measure vortex generator effects, and to evaluate rotational sampling techniques. This paper shows the test setup and loads instrumentation, loads data comparisons and test/analysis correlations. Test data are correlated with DYLOSAT predictions using both the NASA interim turbulence model and rotationally sampled winds as inputs. The latter is demonstrated to have the potential to improve the test/analysis correlations. The paper concludes with an assessment of the importance of vortex generators, site dependence, and machine differences on fatigue loads. The adequacy of prediction techniques used are evaluated and recommendations are made for improvements to the methodology.
    Keywords: STRUCTURAL MECHANICS
    Type: DASCON Engineering, Collected Papers on Wind Turbine Technology; p 139-152
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.
    Keywords: STRUCTURAL MECHANICS
    Type: Collected Papers on Wind Turbine Technology; p 17-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: A computational procedure is presented for evaluating the sensitivity coefficients of the dynamic axisymmetric response of viscoplastic shells of revolution. The analytical formulation is based on Reissner's large deformation shell theory with the effects of transverse shear deformation, rotatory inertia and moments turning around the normal to the middle surface included. The material model is chosen to be isothermal viscoplasticity, and an associated flow rule is used with a von Mises effective stress. A mixed formulation is used with the fundamental unknowns consisting of six stress resultants, three generalized displacements and three velocity components. Spatial discretization is performed using finite elements, with discontinuous stress resultants across element interfaces. The temporal integration is performed by using an explicit central difference scheme (leap-frog method) with an implicit constitutive update. The sensitivity coefficients are evaluated using a direct differentiation approach. Numerical results are presented for a spherical cap subjected to step loading, and a circular plate subjected to impulsive loading. The sensitivity coefficients are generated by evaluating the derivatives of the response quantities with respect to thickness, mass density, Young's modulus, and two of the material parameters characterizing the viscoplastic response. Time histories of the response and sensitivity coefficients are presented, along with spatial distributions of these quantities at selected times.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: Hypervelocity impact experiments were performed to further test the survivability of carbonaceous impactors and to determine potential products that may have been synthesized during impact. Diamonds were launched by the Ames two-stage light gas gun into Al plate at velocities of 2.75 and 3.1 km sec(exp -1). FESEM imagery confirms that diamond fragments survived in both experiments. Earlier experiments found that diamonds were destroyed on impact above 4.3 km sec(exp -1). Thus, the upper stability limit for diamond on impact into Al, as determined from our experimental conditions, is between 3.1 and 4.3 km sec(exp -1). Particles of the carbonaceous chondrite Nogoya were also launched into Al at a velocity of 6.2 km sec (exp -1). Laser desorption (L (exp 2) MS) analyses of the impactor residues indicate that the lowest and highest mass polycyclic aromatic hydrocarbons (PAH's) were largely destroyed on impact; those of intermediate mass (202-220 amu) remained at the same level or increased in abundance. In addition, alkyl-substituted homologs of the most abundant pre-impacted PAH's were synthesized during impact. These results suggest that an unknown fraction of some organic compounds can survive low to moderate impact velocities and that synthesized products can be expected to form up to velocities of, at least, 6.5 km sec(exp -1). We also present examples of craters formed by a unique microparticle accelerator that could launch micron-sized particles of almost any coherent material at velocities up to approximately 15 km sec(exp -1). Many of the experiments have a direct bearing on the interpretation of LDEF craters.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 385-399
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: Interpretation of the wealth of impact data available from the Long Duration Exposure Facility, in terms of the absolute and relative populations of space debris and natural micrometeoroids, requires three dimensional models of the distribution of impact directions, velocities and masses of such particles, as well as understanding of the impact processes. Although the stabilized orbit of LDEF provides limited directional information, it is possible to determine more accurate impact directions from detailed crater morphology. The applicability of this technique has already been demonstrated but the relationship between crater shape and impactor direction and velocity has not been derived in detail. We present the results of impact experiments and simulations: (1) impacts at micron dimensions using the Unit's 2MV Van de Graaff accelerator; (2) impacts at mm dimensions using a Light Gas Gun; and (3) computer simulations using AUTODYN-3D from which an empirical relationship between crater shape and impactor velocity, direction and particle properties we aim to derive. Such a relationship can be applied to any surface exposed to space debris or micrometeoroid particles for which a detailed pointing history is available.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 499-508
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: A 5.2 mm crater in Al-metal represents the largest found on LDEF. We have examined this crater by field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and time-of-flight/secondary ion mass spectroscopy (TOF-SIMS) in order to determine if there is any evidence of impactor residue. Droplet and dome-shaped columns, along with flow features, are evidence of melting. EDS from the crater cavity and rim show Mg, C, O and variable amounts of Si, in addition to Al. No evidence for a chondritic impactor was found, and it hypothesized that the crater may be the result of impact with space debris.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 475-481
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-29
    Description: The finite deformation field of a plane strain Mode 1 crack in a hyperelastic and incompressible material was examined under the assumptions of small scale nonlinearity. Finite element analyses were performed for two different material laws, a Neo-Hookean material and a third order invariant of a Rivlin material. The numerical results for both materials were compared to the appropriate theoretical asymptotic solution. A local cavitation locus surrounding the crack tip was identified for the Neo-Hookean material. For the third order invariant Rivlin material, maximum values of the dominant stress component were found close to the surface of the crack, above and below the deformed crack tip.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Langley Research Center, Computational Modeling of Tires; p 53-68
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-01-25
    Description: Approximately 20 sq m of protective thermal blankets, largely composed of Teflon, were retrieved from the Long Duration Exposure Facility (LDEF) after the spacecraft had spent approximately 5.7 years in space. Examination of these blankets revealed that they contained thousands of hypervelocity impact features ranging from micron-sized craters to penetration holes several millimeters in diameter. We conducted impact experiments in an effort to reproduce such features and to -- hopefully -- understand the relationships between projectile size and the resulting crater or penetration-hole diameter over a wide range of impact velocity. Such relationships are needed to derive the size- and mass-frequency distribution and flux of natural and man-made particles in low-Earth orbit. Powder propellant and light-gas guns were used to launch soda-lime glass spheres of 3.175 mm (1/8 inch) nominal diameter (Dp) into pure Teflon FEP targets at velocities ranging from 1 to 7 km/s. Target thickness (T) was varied over more than three orders of magnitude from infinite halfspace targets (Dp/T less than 0.1) to very thin films (Dp/T greater than 100). Cratering and penetration of massive Teflon targets is dominated by brittle failure and the development of extensive spall zones at the target's front and, if penetrated, the target's rear side. Mass removal by spallation at the back side of Teflon targets may be so severe that the absolute penetration-hole diameter (Dh) can become larger than that of a standard crater (Dc) at relative target thicknesses of Dp/T = 0.6-0.9. The crater diameter is infinite halfspace Teflon targets increases -- at otherwise constant impact conditions -- with encounter velocity by a factor of V0.44. In contrast, the penetration-hole size is very thin foils (Dp/T greater than 50) is essentially unaffected by impact velocity. Penetrations at target thicknesses intermediate to these extremes will scale with variable exponents of V. Our experimental matrix is sufficiently systematic and complete, up to 7 km/s, to make reasonable recommendations for the velocity-scaling of Teflon craters and penetrations. We specifically suggest that cratering behavior and associated equations dominate all impacts in which the shock-pulse duration of the projectile (tp) is shorter than that of the target (tt). We also demonstrate that each penetration hole from space-retrieved surfaces may be assigned a unique projectile size, provided an impact velocity is known or assumed. This calibration seems superior to the traditional ballistic-limit approach.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 521
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-01-25
    Description: A computational procedure is presented for evaluating the sensitivity coefficients of the dynamic frictional contact/impact response of axisymmetric composite structures. The structures are assumed to consist of an arbitrary number of perfectly bonded homogeneous anisotropic layers. The material of each layer is assumed to be hyperelastic, and the effect of geometric nonlinearity is included. The sensitivity coefficients measure the sensitivity of the response to variations in different material, lamination and geometric parameters of the structure. A displacement finite element model is used for the discretization. The normal contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the nodal displacements, and the Lagrange multipliers associated with the contact conditions. The Lagrange multipliers are allowed to be discontinuous at interelement boundaries. Tangential contact conditions are incorporated by using a penalty method in conjunction with the classical Coulomb's friction model. Temporal integration is performed by using Newmark method. The Newton-Raphson iterative scheme is used for the solution of the resulting nonlinear algebraic equations, and for the determination of the contact region, contact conditions (sliding or sticking), and the contact pressures. The sensitivity coefficients are evaluated by using a direct differentiation approach. Numerical results are presented from the frictional contact/impact response of a composite spherical cap impacting on a rigid plate.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...