ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Phosphorylation  (275)
  • American Association for the Advancement of Science (AAAS)  (275)
  • American Institute of Physics (AIP)
  • 2000-2004  (275)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (275)
  • American Institute of Physics (AIP)
  • Springer  (2)
Years
Year
  • 1
    Publication Date: 2004-11-20
    Description: An autoregulatory transcription-translation feedback loop is thought to be essential in generating circadian rhythms in any model organism. In the cyanobacterium Synechococcus elongatus, the essential clock protein KaiC is proposed to form this type of transcriptional negative feedback. Nevertheless, we demonstrate here temperature-compensated, robust circadian cycling of KaiC phosphorylation even without kaiBC messenger RNA accumulation under continuous dark conditions. This rhythm persisted in the presence of a transcription or translation inhibitor. Moreover, kinetic profiles in the ratio of KaiC autophosphorylation-dephosphorylation were also temperature compensated in vitro. Thus, the cyanobacterial clock can keep time independent of de novo transcription and translation processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomita, Jun -- Nakajima, Masato -- Kondo, Takao -- Iwasaki, Hideo -- New York, N.Y. -- Science. 2005 Jan 14;307(5707):251-4. Epub 2004 Nov 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Science, Graduate School of Science, Nagoya University, and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15550625" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/biosynthesis/*metabolism ; *Circadian Rhythm ; Circadian Rhythm Signaling Peptides and Proteins ; Darkness ; Feedback, Physiological ; Light ; Mutation ; Operon ; Phosphorylation ; Protein Biosynthesis ; RNA, Bacterial/metabolism ; RNA, Messenger/metabolism ; Recombinant Proteins/metabolism ; Synechococcus/*genetics/*metabolism ; Temperature ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-01-06
    Description: MDM2 binds the p53 tumor suppressor protein with high affinity and negatively modulates its transcriptional activity and stability. Overexpression of MDM2, found in many human tumors, effectively impairs p53 function. Inhibition of MDM2-p53 interaction can stabilize p53 and may offer a novel strategy for cancer therapy. Here, we identify potent and selective small-molecule antagonists of MDM2 and confirm their mode of action through the crystal structures of complexes. These compounds bind MDM2 in the p53-binding pocket and activate the p53 pathway in cancer cells, leading to cell cycle arrest, apoptosis, and growth inhibition of human tumor xenografts in nude mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vassilev, Lyubomir T -- Vu, Binh T -- Graves, Bradford -- Carvajal, Daisy -- Podlaski, Frank -- Filipovic, Zoran -- Kong, Norman -- Kammlott, Ursula -- Lukacs, Christine -- Klein, Christian -- Fotouhi, Nader -- Liu, Emily A -- New York, N.Y. -- Science. 2004 Feb 6;303(5659):844-8. Epub 2004 Jan 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Discovery Oncology, Roche Research Center, Hoffmann-La Roche, Inc., Nutley, NJ 07110, USA. lyubomir.vassilev@roche.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704432" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/*drug effects ; Binding Sites ; Cell Cycle/drug effects ; Cell Division/*drug effects ; Cell Line ; Cell Line, Tumor ; Cell Survival/drug effects ; Crystallization ; Crystallography, X-Ray ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclins/metabolism ; Dose-Response Relationship, Drug ; Gene Expression ; Genes, p53 ; Humans ; Hydrophobic and Hydrophilic Interactions ; Imidazoles/chemistry/metabolism/*pharmacology ; Mice ; Mice, Nude ; Models, Molecular ; Molecular Weight ; NIH 3T3 Cells ; Neoplasm Transplantation ; Neoplasms, Experimental/drug therapy/metabolism/*pathology ; *Nuclear Proteins ; Phosphorylation ; Piperazines/chemistry/metabolism/*pharmacology ; Protein Conformation ; Proto-Oncogene Proteins/*antagonists & inhibitors/chemistry/metabolism ; Proto-Oncogene Proteins c-mdm2 ; Stereoisomerism ; Transplantation, Heterologous ; Tumor Suppressor Protein p53/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-11-06
    Description: Phosphorylation of the human histone variant H2A.X and H2Av, its homolog in Drosophila melanogaster, occurs rapidly at sites of DNA double-strand breaks. Little is known about the function of this phosphorylation or its removal during DNA repair. Here, we demonstrate that the Drosophila Tip60 (dTip60) chromatin-remodeling complex acetylates nucleosomal phospho-H2Av and exchanges it with an unmodified H2Av. Both the histone acetyltransferase dTip60 as well as the adenosine triphosphatase Domino/p400 catalyze the exchange of phospho-H2Av. Thus, these data reveal a previously unknown mechanism for selective histone exchange that uses the concerted action of two distinct chromatin-remodeling enzymes within the same multiprotein complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kusch, Thomas -- Florens, Laurence -- Macdonald, W Hayes -- Swanson, Selene K -- Glaser, Robert L -- Yates, John R 3rd -- Abmayr, Susan M -- Washburn, Michael P -- Workman, Jerry L -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2084-7. Epub 2004 Nov 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA. tnk@stowers-institute.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15528408" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl Coenzyme A/metabolism ; Acetylation ; Acetyltransferases/genetics/*metabolism ; Adenosine Triphosphatases/metabolism ; Animals ; Cell Line ; *DNA Damage ; DNA Repair ; Dimerization ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/embryology/genetics/*metabolism ; Embryo, Nonmammalian/metabolism ; Histone Acetyltransferases ; Histones/*metabolism ; Multiprotein Complexes/*metabolism ; Nucleosomes/*metabolism ; Phosphorylation ; RNA Interference ; Recombinant Proteins/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-09-11
    Description: The turnover of Jun proteins, like that of other transcription factors, is regulated through ubiquitin-dependent proteolysis. Usually, such processes are regulated by extracellular stimuli through phosphorylation of the target protein, which allows recognition by F box-containing E3 ubiquitin ligases. In the case of c-Jun and JunB, we found that extracellular stimuli also modulate protein turnover by regulating the activity of an E3 ligase by means of its phosphorylation. Activation of the Jun amino-terminal kinase (JNK) mitogen-activated protein kinase cascade after T cell stimulation accelerated degradation of c-Jun and JunB through phosphorylation-dependent activation of the E3 ligase Itch. This pathway modulates cytokine production by effector T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Min -- Labuda, Tord -- Xia, Ying -- Gallagher, Ewen -- Fang, Deyu -- Liu, Yun-Cai -- Karin, Michael -- AI43477/AI/NIAID NIH HHS/ -- ES04151/ES/NIEHS NIH HHS/ -- ES06376/ES/NIEHS NIH HHS/ -- R21AI48542/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 8;306(5694):271-5. Epub 2004 Sep 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0723, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15358865" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD28/immunology ; CD4-Positive T-Lymphocytes/immunology/*metabolism ; Interferon-gamma/metabolism ; Interleukins/metabolism ; Lymphocyte Activation ; *MAP Kinase Kinase Kinase 1 ; MAP Kinase Kinase Kinases/genetics/metabolism ; Mice ; Mitogen-Activated Protein Kinase 8 ; Mitogen-Activated Protein Kinase 9 ; Mitogen-Activated Protein Kinases/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-jun/genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; Receptors, Antigen, T-Cell/immunology ; Recombinant Fusion Proteins/metabolism ; T-Lymphocytes/immunology/*metabolism ; Th2 Cells/cytology/immunology/metabolism ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-05-25
    Description: Tyrosine phosphorylation, regulated by protein tyrosine phosphatases (PTPs) and kinases (PTKs), is important in signaling pathways underlying tumorigenesis. A mutational analysis of the tyrosine phosphatase gene superfamily in human cancers identified 83 somatic mutations in six PTPs (PTPRF, PTPRG, PTPRT, PTPN3, PTPN13, PTPN14), affecting 26% of colorectal cancers and a smaller fraction of lung, breast, and gastric cancers. Fifteen mutations were nonsense, frameshift, or splice-site alterations predicted to result in truncated proteins lacking phosphatase activity. Five missense mutations in the most commonly altered PTP (PTPRT) were biochemically examined and found to reduce phosphatase activity. Expression of wild-type but not a mutant PTPRT in human cancer cells inhibited cell growth. These observations suggest that the mutated tyrosine phosphatases are tumor suppressor genes, regulating cellular pathways that may be amenable to therapeutic intervention.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Zhenghe -- Shen, Dong -- Parsons, D Williams -- Bardelli, Alberto -- Sager, Jason -- Szabo, Steve -- Ptak, Janine -- Silliman, Natalie -- Peters, Brock A -- van der Heijden, Michiel S -- Parmigiani, Giovanni -- Yan, Hai -- Wang, Tian-Li -- Riggins, Greg -- Powell, Steven M -- Willson, James K V -- Markowitz, Sanford -- Kinzler, Kenneth W -- Vogelstein, Bert -- Velculescu, Victor E -- CA 43460/CA/NCI NIH HHS/ -- CA 57345/CA/NCI NIH HHS/ -- CA 62924/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2004 May 21;304(5674):1164-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sidney Kimmel Comprehensive Cancer Center, Howard Hughes Medical Institute, Johns Hopkins University Medical Institutions, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15155950" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Cell Division ; Codon, Nonsense ; Colorectal Neoplasms/*enzymology/*genetics ; Computational Biology ; *DNA Mutational Analysis ; Exons ; Frameshift Mutation ; Genes, Tumor Suppressor ; Humans ; Kinetics ; Markov Chains ; *Mutation ; Mutation, Missense ; Nerve Tissue Proteins/chemistry/genetics/metabolism ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 13 ; Protein Tyrosine Phosphatase, Non-Receptor Type 3 ; Protein Tyrosine Phosphatases/chemistry/*genetics/metabolism ; Receptor-Like Protein Tyrosine Phosphatases, Class 5 ; Signal Transduction ; Transfection ; Tyrosine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-11-30
    Description: When exposed to increased dissolved solute in their environment (hyperosmotic stress), all eukaryotic cells respond by rapidly activating a conserved mitogen-activated protein kinase cascade, known in budding yeast Saccharomyces cerevisiae as the high osmolarity glycerol (HOG) pathway. Intensive genetic and biochemical analysis in this organism has revealed the presumptive osmosensors, downstream signaling components, and metabolic and transcriptional changes that allow cells to cope with this stressful condition. These findings have had direct application to understanding stress sensing and control of transcription by stress-activated mitogen-activated protein kinases in mammalian cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Westfall, Patrick J -- Ballon, Daniel R -- Thorner, Jeremy -- GM-21841/GM/NIGMS NIH HHS/ -- GM-68343/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1511-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15567851" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Nucleus/metabolism ; GTPase-Activating Proteins/metabolism ; Glycerol/*metabolism ; Intracellular Signaling Peptides and Proteins ; *MAP Kinase Signaling System ; Membrane Proteins/metabolism ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Mitogen-Activated Protein Kinases/*metabolism ; Osmolar Concentration ; Phosphorylation ; Protein Kinases/metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-02-21
    Description: PTEN is a tumor suppressor protein that dephosphorylates phosphatidylinositol 3,4,5 trisphosphate and antagonizes the phosphatidylinositol-3 kinase signaling pathway. We show here that PTEN can also inhibit cell migration through its C2 domain, independent of its lipid phosphatase activity. This activity depends on the protein phosphatase activity of PTEN and on dephosphorylation at a single residue, threonine(383). The ability of PTEN to control cell migration through its C2 domain is likely to be an important feature of its tumor suppressor activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raftopoulou, Myrto -- Etienne-Manneville, Sandrine -- Self, Annette -- Nicholls, Sarah -- Hall, Alan -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1179-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, Cancer Research UK Oncogene and Signal Transduction Group, University College London, Gower Street, London WC1E 6BT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976311" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Catalysis ; Catalytic Domain ; Cell Line, Tumor ; Cell Movement/*physiology ; Cercopithecus aethiops ; Glioma ; Humans ; Mutation ; PTEN Phosphohydrolase ; Phosphoprotein Phosphatases/chemistry/metabolism ; Phosphoric Monoester Hydrolases/*chemistry/genetics/metabolism/*physiology ; Phosphorylation ; Phosphothreonine/metabolism ; Precipitin Tests ; Protein Structure, Tertiary ; Recombinant Proteins/pharmacology ; Sequence Deletion ; Transfection ; Tumor Suppressor Proteins/*chemistry/genetics/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muoio, Deborah M -- Newgard, Christopher B -- New York, N.Y. -- Science. 2004 Oct 15;306(5695):425-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15486283" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/metabolism ; Animals ; Cells, Cultured ; DNA-Binding Proteins/genetics/metabolism ; Endoplasmic Reticulum/*metabolism ; Endoribonucleases ; Enzyme Activation ; Homeostasis ; Humans ; Insulin/*metabolism ; Insulin Receptor Substrate Proteins ; Insulin Resistance/*physiology ; Islets of Langerhans/metabolism ; Liver/metabolism ; Membrane Proteins/metabolism ; Mice ; Mitogen-Activated Protein Kinase 8 ; Mitogen-Activated Protein Kinases/*metabolism ; Muscle, Skeletal/metabolism ; Nuclear Proteins/genetics/metabolism ; Obesity/*metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Signal Transduction ; Transcription Factors ; eIF-2 Kinase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-10-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hall, Alan -- New York, N.Y. -- Science. 2004 Oct 1;306(5693):65-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory for Molecular Cell Biology & Cell Biology Unit, University College, London WC1E 6BT, UK. alan.hall@ucl. ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15459376" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism/virology ; Actins/metabolism ; Catenins ; Cell Adhesion Molecules/metabolism ; Cell Membrane/metabolism/virology ; Enzyme Activation ; Kinesin/metabolism ; Membrane Fusion ; Membrane Glycoproteins/genetics/metabolism ; Microtubules/metabolism ; Mutation ; Phosphoproteins/metabolism ; Phosphorylation ; Vaccinia virus/genetics/growth & development/*metabolism ; Viral Envelope Proteins/genetics/*metabolism ; Viral Structural Proteins/*metabolism ; src-Family Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-10-23
    Description: Signaling by the transcription factor nuclear factor kappa B (NF-kappaB) involves its release from inhibitor kappa B (IkappaB) in the cytosol, followed by translocation into the nucleus. NF-kappaB regulation of IkappaBalpha transcription represents a delayed negative feedback loop that drives oscillations in NF-kappaB translocation. Single-cell time-lapse imaging and computational modeling of NF-kappaB (RelA) localization showed asynchronous oscillations following cell stimulation that decreased in frequency with increased IkappaBalpha transcription. Transcription of target genes depended on oscillation persistence, involving cycles of RelA phosphorylation and dephosphorylation. The functional consequences of NF-kappaB signaling may thus depend on number, period, and amplitude of oscillations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelson, D E -- Ihekwaba, A E C -- Elliott, M -- Johnson, J R -- Gibney, C A -- Foreman, B E -- Nelson, G -- See, V -- Horton, C A -- Spiller, D G -- Edwards, S W -- McDowell, H P -- Unitt, J F -- Sullivan, E -- Grimley, R -- Benson, N -- Broomhead, D -- Kell, D B -- White, M R H -- New York, N.Y. -- Science. 2004 Oct 22;306(5696):704-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Cell Imaging, School of Biological Sciences, Bioscience Research Building, Crown Street, Liverpool, L69 7ZB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15499023" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Computer Simulation ; Cytoplasm/metabolism ; Etoposide/pharmacology ; Feedback, Physiological ; *Gene Expression Regulation ; HeLa Cells ; Humans ; I-kappa B Proteins/genetics/metabolism ; Models, Biological ; NF-kappa B/*metabolism ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transcription Factor RelA ; Transcription, Genetic ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2004-01-24
    Description: Jun N-terminal kinases (JNKs) are essential for neuronal microtubule assembly and apoptosis. Phosphorylation of the activating protein 1 (AP1) transcription factor c-Jun, at multiple sites within its transactivation domain, is required for JNK-induced neurotoxicity. We report that in neurons the stability of c-Jun is regulated by the E3 ligase SCF(Fbw7), which ubiquitinates phosphorylated c-Jun and facilitates c-Jun degradation. Fbw7 depletion resulted in accumulation of phosphorylated c-Jun, stimulation of AP1 activity, and neuronal apoptosis. SCF(Fbw7) therefore antagonizes the apoptotic c-Jun-dependent effector arm of JNK signaling, allowing neurons to tolerate potentially neurotoxic JNK activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nateri, Abdolrahman S -- Riera-Sans, Lluis -- Da Costa, Clive -- Behrens, Axel -- New York, N.Y. -- Science. 2004 Feb 27;303(5662):1374-8. Epub 2004 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mammalian Genetics Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14739463" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; Base Sequence ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line ; F-Box Proteins/genetics/*metabolism ; Humans ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Signaling System ; Mice ; Mitogen-Activated Protein Kinases/*metabolism ; Molecular Sequence Data ; Neurons/*physiology ; PC12 Cells ; Phosphorylation ; Proto-Oncogene Proteins c-jun/*metabolism ; RNA, Small Interfering/metabolism ; Rats ; Transcription Factor AP-1/metabolism ; Transfection ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-06-26
    Description: The nuclear factor-kappa B (NF-kappaB) family of transcription factors plays a seminal role in inflammation, apoptosis, development, and cancer. Modulation of NF-kappaB-mediated gene expression in response to diverse signals is coordinated by the IkappaB kinase (IKK) complex. We identified ELKS, an essential regulatory subunit of the IKK complex. Silencing ELKS expression by RNA interference blocked induced expression of NF-kappaB target genes, including the NF-kappaB inhibitor IkappaBalpha and proinflammatory genes such as cyclo-oxygenase 2 and interleukin 8. These cells were also not protected from apoptosis in response to cytokines. ELKS likely functions by recruiting IkappaBalpha to the IKK complex and thus serves a regulatory function for IKK activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ducut Sigala, Jeanette L -- Bottero, Virginie -- Young, David B -- Shevchenko, Andrej -- Mercurio, Frank -- Verma, Inder M -- New York, N.Y. -- Science. 2004 Jun 25;304(5679):1963-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Salk Institute for Biological Sciences, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15218148" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Apoptosis ; Carrier Proteins/genetics/*metabolism ; Cell Line ; Cyclooxygenase 2 ; Gene Expression ; Genes, Reporter ; HeLa Cells ; Humans ; I-kappa B Kinase ; I-kappa B Proteins/genetics/metabolism ; Interleukin-1/pharmacology ; Interleukin-8/genetics ; Isoenzymes/genetics ; Membrane Proteins ; Mice ; Mice, Knockout ; Mitogen-Activated Protein Kinases/metabolism ; Mutation ; NF-kappa B/*metabolism ; Nerve Tissue Proteins/genetics/*metabolism ; Phosphorylation ; Precipitin Tests ; Prostaglandin-Endoperoxide Synthases/genetics ; Protein-Serine-Threonine Kinases/*metabolism ; RNA Interference ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-06-19
    Description: The Hedgehog (Hh) signaling pathway is intimately linked to cell growth and differentiation, with normal roles in embryonic pattern formation and adult tissue homeostasis and pathological roles in tumor initiation and growth. Recent advances in our understanding of Hh response have resulted from the identification of new pathway components and new mechanisms of action for old pathway components. The most striking new finding is that signal transmission from membrane to cytoplasm proceeds through recruitment, by the seven-transmembrane protein Smoothened, of an atypical kinesin, which routes pathway activation by interaction with other components of a complex that includes the latent zinc finger transcription factor, Ci.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lum, Lawrence -- Beachy, Philip A -- New York, N.Y. -- Science. 2004 Jun 18;304(5678):1755-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15205520" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; DNA-Binding Proteins/metabolism ; Drosophila/metabolism ; Drosophila Proteins/*metabolism ; Gene Expression Regulation ; Hedgehog Proteins ; Kinesin/metabolism ; Mammals/metabolism ; Membrane Proteins/metabolism ; Models, Biological ; Phosphorylation ; Protein Transport ; Receptors, Cell Surface ; Receptors, G-Protein-Coupled/metabolism ; *Signal Transduction ; Trans-Activators/metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-01-31
    Description: Protein tyrosine kinases and phosphatases cooperate to regulate normal immune cell function. We examined the role of PEST domain-enriched tyrosine phosphatase (PEP) in regulating T cell antigen-receptor function during thymocyte development and peripheral T cell differentiation. Although normal naive T cell functions were retained in pep-deficient mice, effector/memory T cells demonstrated enhanced activation of Lck. In turn, this resulted in increased expansion and function of the effector/memory T cell pool, which was also associated with spontaneous development of germinal centers and elevated serum antibody levels. These results revealed a central role for PEP in negatively regulating specific aspects of T cell development and function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hasegawa, Kiminori -- Martin, Flavius -- Huang, Guangming -- Tumas, Dan -- Diehl, Lauri -- Chan, Andrew C -- New York, N.Y. -- Science. 2004 Jan 30;303(5658):685-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Genentech, Inc., One DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14752163" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoimmunity ; B-Lymphocytes/physiology ; CD4-Positive T-Lymphocytes/immunology/physiology ; CD8-Positive T-Lymphocytes/immunology/physiology ; Cell Cycle ; Gene Targeting ; Germinal Center/physiology ; Hydrogen-Ion Concentration ; Immunoglobulins/blood ; *Immunologic Memory ; Lymphocyte Activation ; Lymphocyte Count ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Transgenic ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 12 ; Protein Tyrosine Phosphatases/genetics/*metabolism ; Receptors, Antigen, T-Cell/genetics/immunology ; Signal Transduction ; T-Lymphocyte Subsets/immunology ; T-Lymphocytes/*immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2004-08-07
    Description: The cascade of events that leads to vaccinia-induced actin polymerization requires Src-dependent tyrosine phosphorylation of the viral membrane protein A36R. We found that a localized outside-in signaling cascade induced by the viral membrane protein B5R is required to potently activate Src and induce A36R phosphorylation at the plasma membrane. In addition, Src-mediated phosphorylation of A36R regulated the ability of virus particles to recruit and release conventional kinesin. Thus, Src activity regulates the transition between cytoplasmic microtubule transport and actin-based motility at the plasma membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Newsome, Timothy P -- Scaplehorn, Niki -- Way, Michael -- New York, N.Y. -- Science. 2004 Oct 1;306(5693):124-9. Epub 2004 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Motility Laboratory, Room 529, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297625" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Animals ; Cell Line ; Cell Membrane/metabolism/virology ; Chickens ; Consensus Sequence ; Enzyme Activation ; HeLa Cells ; Humans ; Kinesin/metabolism ; Membrane Glycoproteins/chemistry/metabolism ; Microtubules/*metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Recombinant Fusion Proteins/metabolism ; Vaccinia virus/genetics/*metabolism/physiology ; Viral Envelope Proteins/chemistry/metabolism ; Viral Structural Proteins/*metabolism ; Virion/metabolism ; src-Family Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-05-08
    Description: Prostaglandin E2 (PGE2) is a crucial mediator of inflammatory pain sensitization. Here, we demonstrate that inhibition of a specific glycine receptor subtype (GlyR alpha3) by PGE2-induced receptor phosphorylation underlies central inflammatory pain sensitization. We show that GlyR alpha3 is distinctly expressed in superficial layers of the spinal cord dorsal horn. Mice deficient in GlyR alpha3 not only lack the inhibition of glycinergic neurotransmission by PGE2 seen in wild-type mice but also show a reduction in pain sensitization induced by spinal PGE2 injection or peripheral inflammation. Thus, GlyR alpha3 may provide a previously unrecognized molecular target in pain therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harvey, Robert J -- Depner, Ulrike B -- Wassle, Heinz -- Ahmadi, Seifollah -- Heindl, Cornelia -- Reinold, Heiko -- Smart, Trevor G -- Harvey, Kirsten -- Schutz, Burkhard -- Abo-Salem, Osama M -- Zimmer, Andreas -- Poisbeau, Pierrick -- Welzl, Hans -- Wolfer, David P -- Betz, Heinrich -- Zeilhofer, Hanns Ulrich -- Muller, Ulrike -- New York, N.Y. -- Science. 2004 May 7;304(5672):884-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, The School of Pharmacy, London WC1N 1AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15131310" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Dinoprostone/administration & dosage/*metabolism/pharmacology ; Female ; Freund's Adjuvant ; Glycine/metabolism ; Humans ; Inflammation/metabolism/*physiopathology ; Male ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Neurons/metabolism ; Pain/*physiopathology ; Patch-Clamp Techniques ; Phosphorylation ; Posterior Horn Cells/*metabolism ; Receptors, Glycine/chemistry/genetics/*metabolism ; Signal Transduction ; Spinal Cord/*metabolism ; Synaptic Transmission ; Transfection ; Zymosan
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉York, John D -- Hunter, Tony -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2053-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Cancer Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. yorkj@duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604398" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/metabolism ; Inositol/chemistry ; Inositol Phosphates/*metabolism ; Models, Biological ; Molecular Conformation ; Nuclear Proteins/*metabolism ; Phosphates/*metabolism ; Phosphatidylinositols/metabolism ; Phosphorylation ; Phosphotransferases (Phosphate Group Acceptor)/metabolism ; Proteins/*metabolism ; RNA-Binding Proteins/*metabolism ; Saccharomyces cerevisiae/metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; Second Messenger Systems ; Serine/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-12-18
    Description: The inositol pyrophosphates IP7 and IP8 contain highly energetic pyrophosphate bonds. Although implicated in various biologic functions, their molecular sites of action have not been clarified. Using radiolabeled IP7, we detected phosphorylation of multiple eukaryotic proteins. We also observed phosphorylation of endogenous proteins by endogenous IP7 in yeast. Phosphorylation by IP7 is nonenzymatic and may represent a novel intracellular signaling mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saiardi, Adolfo -- Bhandari, Rashna -- Resnick, Adam C -- Snowman, Adele M -- Snyder, Solomon H -- DA00074/DA/NIDA NIH HHS/ -- MH068830-02/MH/NIMH NIH HHS/ -- MH18501/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2101-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604408" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Drosophila Proteins/metabolism ; Drosophila melanogaster ; Escherichia coli Proteins/metabolism ; Humans ; Inositol Phosphates/*metabolism ; Kinetics ; Magnesium/metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/chemistry/*metabolism ; Phosphates/metabolism ; Phosphorylation ; Phosphotransferases (Phosphate Group Acceptor)/metabolism ; Protein Kinases/genetics/metabolism ; Proteins/*metabolism ; RNA-Binding Proteins/chemistry/*metabolism ; Saccharomyces cerevisiae/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Serine/metabolism ; Signal Transduction ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2004-11-20
    Description: Mobilization of fatty acids from triglyceride stores in adipose tissue requires lipolytic enzymes. Dysfunctional lipolysis affects energy homeostasis and may contribute to the pathogenesis of obesity and insulin resistance. Until now, hormone-sensitive lipase (HSL) was the only enzyme known to hydrolyze triglycerides in mammalian adipose tissue. Here, we report that a second enzyme, adipose triglyceride lipase (ATGL), catalyzes the initial step in triglyceride hydrolysis. It is interesting that ATGL contains a "patatin domain" common to plant acyl-hydrolases. ATGL is highly expressed in adipose tissue of mice and humans. It exhibits high substrate specificity for triacylglycerol and is associated with lipid droplets. Inhibition of ATGL markedly decreases total adipose acyl-hydrolase activity. Thus, ATGL and HSL coordinately catabolize stored triglycerides in adipose tissue of mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zimmermann, Robert -- Strauss, Juliane G -- Haemmerle, Guenter -- Schoiswohl, Gabriele -- Birner-Gruenberger, Ruth -- Riederer, Monika -- Lass, Achim -- Neuberger, Georg -- Eisenhaber, Frank -- Hermetter, Albin -- Zechner, Rudolf -- New York, N.Y. -- Science. 2004 Nov 19;306(5700):1383-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biosciences, University of Graz, Graz, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15550674" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; Adipocytes/enzymology/*metabolism ; Adipose Tissue/enzymology/*metabolism ; Adipose Tissue, Brown/enzymology/metabolism ; Amino Acid Sequence ; Animals ; COS Cells ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Cytoplasm/enzymology ; DNA, Complementary ; Diglycerides/metabolism ; Fatty Acids/metabolism ; Gene Silencing ; Glycerol/metabolism ; Humans ; Isoproterenol/pharmacology ; *Lipid Mobilization ; Lipolysis ; Lipoprotein Lipase/chemistry/genetics/immunology/*metabolism ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Structure, Tertiary ; RNA, Messenger/genetics/metabolism ; Sterol Esterase/genetics/*metabolism ; Substrate Specificity ; Transfection ; Triglycerides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-11-30
    Description: Signaling pathways that are activated by epidermal growth factor (EGF) or fibroblast growth factor (FGF) receptors have been identified and compared (detailed Connections Maps are available at Science's Signal Transduction Knowledge Environment). Both receptors stimulate a similar complement of intracellular signaling pathways. However, whereas activated EGF receptors (EGFRs) function as the main platform for recruitment of signaling proteins, signaling through the FGF receptors (FGFRs) is mediated primarily by assembly of a multidocking protein complex. Moreover, FGFR signaling is subject to additional intracellular and extracellular control mechanisms that do not affect EGFR signaling. The differential circuitry of the intracellular networks that are activated by EGFR and FGFR may affect signal specificity and physiological responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schlessinger, Joseph -- R01-AR051448-01/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1506-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA. joseph.schlessinger@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15567848" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Binding Sites ; Dimerization ; Epidermal Growth Factor/metabolism ; Fibroblast Growth Factors/metabolism ; Heparan Sulfate Proteoglycans/metabolism ; Humans ; Ligands ; Phosphorylation ; Receptor, Epidermal Growth Factor/chemistry/*metabolism ; Receptors, Fibroblast Growth Factor/chemistry/*metabolism ; Second Messenger Systems ; *Signal Transduction ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2004-02-07
    Description: Microtubule (MT) stabilization is regulated by the small guanosine triphosphate (GTP)-binding protein Rho and its effector, mammalian homolog of Diaphanous (mDia), in migrating cells, but factors responsible for localized stabilization at the leading edge are unknown. We report that integrin-mediated activation of focal adhesion kinase (FAK) at the leading edge is required for MT stabilization by the Rho-mDia signaling pathway in mouse fibroblasts. MT stabilization also involved FAK-regulated localization of a lipid raft marker, ganglioside GM1, to the leading edge. The integrin-FAK signaling pathway may facilitate Rho-mDia signaling through GM1, or through a specialized membrane domain containing GM1, to stabilize MTs in the leading edge of migrating cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palazzo, Alexander F -- Eng, Christina H -- Schlaepfer, David D -- Marcantonio, Eugene E -- Gundersen, Gregg G -- CA87038/CA/NCI NIH HHS/ -- GM 44585/GM/NIGMS NIH HHS/ -- GM 62939/GM/NIGMS NIH HHS/ -- GM 68695/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 6;303(5659):836-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Cell Biology, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14764879" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Carrier Proteins/metabolism ; Cell Adhesion ; Cell Line ; Cell Membrane/*metabolism ; Cholesterol/metabolism ; Fibronectins/metabolism/pharmacology ; Focal Adhesion Kinase 1 ; Focal Adhesion Protein-Tyrosine Kinases ; G(M1) Ganglioside/metabolism ; Glycosylphosphatidylinositols/metabolism ; Integrins/*metabolism ; Membrane Microdomains/*metabolism ; Mice ; Mice, Knockout ; Microtubules/*metabolism/ultrastructure ; NIH 3T3 Cells ; Phosphorylation ; Protein-Tyrosine Kinases/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Tubulin/metabolism ; rho GTP-Binding Proteins/*metabolism ; rhoA GTP-Binding Protein/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2004-10-23
    Description: Despite evidence that protein kinases are regulators of apoptosis, a specific role for phosphatases in regulating cell survival has not been established. Here we show that alpha4, a noncatalytic subunit of protein phosphatase 2A (PP2A), is required to repress apoptosis in murine cells. alpha4 is a nonredundant regulator of the dephosphorylation of the transcription factors c-Jun and p53. As a result of alpha4 deletion, multiple proapoptotic genes were transcribed. Either inhibition of new protein synthesis or Bcl-xL overexpression suppressed apoptosis initiated by alpha4 deletion. Thus, mammalian cell viability depends on repression of transcription-initiated apoptosis mediated by a component of PP2A.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kong, Mei -- Fox, Casey J -- Mu, James -- Solt, Laura -- Xu, Anne -- Cinalli, Ryan M -- Birnbaum, Morris J -- Lindsten, Tullia -- Thompson, Craig B -- New York, N.Y. -- Science. 2004 Oct 22;306(5696):695-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15499020" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/cytology ; Animals ; *Apoptosis ; Cell Differentiation ; Cell Line ; Cell Survival ; Cells, Cultured ; Cycloheximide/pharmacology ; Gene Deletion ; Gene Expression Profiling ; Liver/cytology/metabolism ; Mice ; Mice, Transgenic ; Oligonucleotide Array Sequence Analysis ; PPAR gamma/metabolism ; Phosphoprotein Phosphatases/*metabolism ; Phosphoproteins/*metabolism ; Phosphorylation ; Protein Phosphatase 2 ; Protein Synthesis Inhibitors/pharmacology ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Proto-Oncogene Proteins c-jun/metabolism ; Transcription, Genetic ; Tumor Suppressor Protein p53/metabolism ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2004-07-27
    Description: Inherited channelopathies are at the origin of many neurological disorders. Here we report a form of channelopathy that is acquired in experimental temporal lobe epilepsy (TLE), the most common form of epilepsy in adults. The excitability of CA1 pyramidal neuron dendrites was increased in TLE because of decreased availability of A-type potassium ion channels due to transcriptional (loss of channels) and posttranslational (increased channel phosphorylation by extracellular signal-regulated kinase) mechanisms. Kinase inhibition partly reversed dendritic excitability to control levels. Such acquired channelopathy is likely to amplify neuronal activity and may contribute to the initiation and/or propagation of seizures in TLE.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernard, Christophe -- Anderson, Anne -- Becker, Albert -- Poolos, Nicholas P -- Beck, Heinz -- Johnston, Daniel -- MH44754/MH/NIMH NIH HHS/ -- MH48432/MH/NIMH NIH HHS/ -- NS37444/NS/NINDS NIH HHS/ -- NS39943/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 23;305(5683):532-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA. cbernard@inmed.univ-mrs.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15273397" target="_blank"〉PubMed〈/a〉
    Keywords: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology ; 4-Aminopyridine/pharmacology ; Action Potentials/drug effects ; Animals ; Butadienes/pharmacology ; Dendrites/*physiology ; Enzyme Inhibitors/pharmacology ; Epilepsy, Temporal Lobe/*physiopathology ; Hippocampus/cytology/*physiopathology ; Male ; Membrane Potentials ; Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism ; Nitriles/pharmacology ; Phosphorylation ; Pilocarpine/administration & dosage ; Potassium Channel Blockers/pharmacology ; Potassium Channels/drug effects/metabolism/*physiology ; *Potassium Channels, Voltage-Gated ; Protein Kinase C/antagonists & inhibitors/metabolism ; Pyramidal Cells/*physiology ; Rats ; Rats, Sprague-Dawley ; Shal Potassium Channels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2004-06-26
    Description: Arrestin regulates almost all G protein-coupled receptor (GPCR)-mediated signaling and trafficking. We report that the multidomain protein, spinophilin, antagonizes these multiple arrestin functions. Through blocking G protein receptor kinase 2 (GRK2) association with receptor-Gbetagamma complexes, spinophilin reduces arrestin-stabilized receptor phosphorylation, receptor endocytosis, and the acceleration of mitogen-activated protein kinase (MAPK) activity following endocytosis. Spinophilin knockout mice were more sensitive than wild-type mice to sedation elicited by stimulation of alpha2 adrenergic receptors, whereas arrestin 3 knockout mice were more resistant, indicating that the signal-promoting, rather than the signal-terminating, roles of arrestin are more important for certain response pathways. The reciprocal interactions of GPCRs with spinophilin and arrestin represent a regulatory mechanism for fine-tuning complex receptor-orchestrated cell signaling and responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Qin -- Zhao, Jiali -- Brady, Ashley E -- Feng, Jian -- Allen, Patrick B -- Lefkowitz, Robert J -- Greengard, Paul -- Limbird, Lee E -- DA10044/DA/NIDA NIH HHS/ -- DK43879/DK/NIDDK NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- HL42671/HL/NHLBI NIH HHS/ -- MH40899/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2004 Jun 25;304(5679):1940-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Center of Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, TN 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15218143" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/pharmacology ; Adrenergic alpha-Agonists/pharmacology ; Animals ; Arrestin/*antagonists & inhibitors/*metabolism ; Arrestins/genetics/metabolism ; Cell Line ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Endocytosis ; Enzyme Activation ; Epinephrine/pharmacology ; G-Protein-Coupled Receptor Kinase 3 ; GTP-Binding Proteins/*metabolism ; Humans ; MAP Kinase Signaling System ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microfilament Proteins/genetics/*metabolism ; Mitogen-Activated Protein Kinases/metabolism ; Motor Activity ; Nerve Tissue Proteins/genetics/*metabolism ; Phosphorylation ; Receptors, Adrenergic, alpha-2/*metabolism ; Rotarod Performance Test ; Signal Transduction ; Transfection ; beta-Adrenergic Receptor Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-11-30
    Description: The actions of many extracellular stimuli are elicited by complexes of cell surface receptors, heterotrimeric guanine nucleotide-binding proteins (G proteins), and mitogen-activated protein (MAP) kinase complexes. Analysis of haploid yeast cells and their response to peptide mating pheromones has produced important advances in our understanding of G protein and MAP kinase signaling mechanisms. Many of the components, their interrelationships, and their regulators were first identified in yeast. Current analysis of the pheromone response pathway (see the Connections Maps at Science's Signal Transduction Knowledge Environment) will benefit from new and powerful genomic, proteomic, and computational approaches that will likely reveal additional general principles that are applicable to more complex organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yuqi -- Dohlman, Henrik G -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1508-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15567849" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle ; GTP-Binding Proteins/metabolism ; Lipoproteins/*metabolism ; *MAP Kinase Signaling System ; Mutation ; Pheromones/*metabolism ; Phosphorylation ; Protein Precursors/*metabolism ; Saccharomyces cerevisiae/genetics/*metabolism/physiology ; Saccharomyces cerevisiae Proteins/*metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2004-06-12
    Description: A tight coupling between adenosine triphosphate (ATP) hydrolysis and vectorial ion transport has to be maintained by ATP-consuming ion pumps. We report two crystal structures of Ca2+-bound sarco(endo)plasmic reticulum Ca2+-adenosine triphosphatase (SERCA) at 2.6 and 2.9 angstrom resolution in complex with (i) a nonhydrolyzable ATP analog [adenosine (beta-gamma methylene)-triphosphate] and (ii) adenosine diphosphate plus aluminum fluoride. SERCA reacts with ATP by an associative mechanism mediated by two Mg2+ ions to form an aspartyl-phosphorylated intermediate state (Ca2-E1 approximately P). The conformational changes that accompany the reaction with ATP pull the transmembrane helices 1 and 2 and close a cytosolic entrance for Ca2+, thereby preventing backflow before Ca2+ is released on the other side of the membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sorensen, Thomas Lykke-Moller -- Moller, Jesper Vuust -- Nissen, Poul -- New York, N.Y. -- Science. 2004 Jun 11;304(5677):1672-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15192230" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/*analogs & derivatives/*metabolism ; Aluminum Compounds/metabolism ; Animals ; Binding Sites ; Calcium/*metabolism ; Calcium-Transporting ATPases/*chemistry/*metabolism ; Crystallization ; Crystallography, X-Ray ; Cytosol/metabolism ; Fluorides/metabolism ; Models, Molecular ; Muscle Fibers, Fast-Twitch/*enzymology ; Phosphorylation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rabbits ; Sarcoplasmic Reticulum Calcium-Transporting ATPases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-01-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, Benjamin G -- New York, N.Y. -- Science. 2004 Jan 23;303(5657):480-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dyson Perrins Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QY, UK. ben.davis@chemistry.oxford.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14739446" target="_blank"〉PubMed〈/a〉
    Keywords: Biochemistry/*methods ; Drug Design ; Erythropoietin/chemistry/metabolism ; Glycosylation ; *Molecular Mimicry ; Molecular Structure ; Phosphorylation ; *Protein Processing, Post-Translational ; Recombinant Proteins/chemistry/metabolism ; ras Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2004-04-10
    Description: Ventricular arrhythmias can cause sudden cardiac death (SCD) in patients with normal hearts and in those with underlying disease such as heart failure. In animals with heart failure and in patients with inherited forms of exercise-induced SCD, depletion of the channel-stabilizing protein calstabin2 (FKBP12.6) from the ryanodine receptor-calcium release channel (RyR2) complex causes an intracellular Ca2+ leak that can trigger fatal cardiac arrhythmias. A derivative of 1,4-benzothiazepine (JTV519) increased the affinity of calstabin2 for RyR2, which stabilized the closed state of RyR2 and prevented the Ca2+ leak that triggers arrhythmias. Thus, enhancing the binding of calstabin2 to RyR2 may be a therapeutic strategy for common ventricular arrhythmias.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wehrens, Xander H T -- Lehnart, Stephan E -- Reiken, Steven R -- Deng, Shi-Xian -- Vest, John A -- Cervantes, Daniel -- Coromilas, James -- Landry, Donald W -- Marks, Andrew R -- New York, N.Y. -- Science. 2004 Apr 9;304(5668):292-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15073377" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Arrhythmia Agents/*pharmacology/therapeutic use ; Calcium/metabolism ; Calcium-Transporting ATPases/metabolism ; Cell Line ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Death, Sudden, Cardiac/prevention & control ; Electric Stimulation ; Electrocardiography ; Heart/*drug effects/physiology ; Humans ; Isoproterenol/pharmacology ; Mice ; Myocardial Contraction ; Phosphorylation ; Physical Exertion ; Protein Binding ; Ryanodine Receptor Calcium Release Channel/*metabolism ; Sarcoplasmic Reticulum/metabolism ; Sarcoplasmic Reticulum Calcium-Transporting ATPases ; Tachycardia, Ventricular/metabolism/*prevention & control ; Tacrolimus Binding Proteins/deficiency/genetics/*metabolism ; Thiazepines/*pharmacology/therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2004-07-31
    Description: Gefitinib (Iressa, Astra Zeneca Pharmaceuticals) is a tyrosine kinase inhibitor that targets the epidermal growth factor receptor (EGFR) and induces dramatic clinical responses in nonsmall cell lung cancers (NSCLCs) with activating mutations within the EGFR kinase domain. We report that these mutant EGFRs selectively activate Akt and signal transduction and activator of transcription (STAT) signaling pathways, which promote cell survival, but have no effect on extracellular signal-regulated kinase signaling, which induces proliferation. NSCLC cells expressing mutant EGFRs underwent extensive apoptosis after small interfering RNA-mediated knockdown of the mutant EGFR or treatment with pharmacological inhibitors of Akt and STAT signaling and were relatively resistant to apoptosis induced by conventional chemotherapeutic drugs. Thus, mutant EGFRs selectively transduce survival signals on which NSCLCs become dependent; inhibition of those signals by gefitinib may contribute to the drug's efficacy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sordella, Raffaella -- Bell, Daphne W -- Haber, Daniel A -- Settleman, Jeffrey -- P01 95281/PHS HHS/ -- New York, N.Y. -- Science. 2004 Aug 20;305(5687):1163-7. Epub 2004 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Therapeutics, Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15284455" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/pharmacology ; *Apoptosis ; Carcinoma, Non-Small-Cell Lung/drug therapy/*genetics/pathology ; Catalytic Domain ; Cell Line ; Cell Line, Tumor ; Cell Survival ; DNA-Binding Proteins/antagonists & inhibitors/metabolism ; Enzyme Activation ; Humans ; Lung Neoplasms/drug therapy/*genetics/pathology ; Mice ; *Milk Proteins ; Mitogen-Activated Protein Kinases/metabolism ; Mutation ; Mutation, Missense ; Phosphorylation ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Proto-Oncogene Proteins/antagonists & inhibitors/metabolism ; Proto-Oncogene Proteins c-akt ; Quinazolines/*pharmacology ; RNA, Small Interfering ; Receptor, Epidermal Growth Factor/*genetics/*metabolism ; STAT5 Transcription Factor ; Sequence Deletion ; Signal Transduction ; Trans-Activators/antagonists & inhibitors/metabolism ; Transfection ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2004-06-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Minna, John D -- Gazdar, Adi F -- Sprang, Stephen R -- Herz, Joachim -- P50CA70907/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1458-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. john.minna@utsouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15178790" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics/metabolism ; Amino Acid Substitution ; Antineoplastic Agents/therapeutic use ; Carcinoma, Non-Small-Cell Lung/drug therapy/*genetics/metabolism ; Controlled Clinical Trials as Topic ; Enzyme Inhibitors/therapeutic use ; Epidermal Growth Factor/metabolism ; *Genes, erbB-1 ; Humans ; Japan ; Ligands ; Lung Neoplasms/*drug therapy/*genetics/metabolism ; *Mutation ; Phosphorylation ; Protein Structure, Tertiary ; Quinazolines/*therapeutic use ; Receptor, Epidermal Growth Factor/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Sequence Deletion ; Smoking ; Treatment Outcome ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2004-05-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greenamyre, J Timothy -- Hastings, Teresa G -- New York, N.Y. -- Science. 2004 May 21;304(5674):1120-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA. jgreena@emory.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15155938" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/metabolism ; Dopamine/metabolism ; Electron Transport Complex I/metabolism ; Humans ; Intracellular Signaling Peptides and Proteins ; Mitochondria/enzymology/*metabolism ; Mutation ; Nerve Tissue Proteins/genetics/metabolism ; Neurons/metabolism ; Oncogene Proteins/genetics/metabolism ; Oxidative Stress ; Parkinson Disease/*etiology/*genetics/metabolism ; Phosphorylation ; Protein Kinases/*genetics/*metabolism ; Reactive Oxygen Species/metabolism ; Synucleins ; Ubiquitin Thiolesterase/genetics/metabolism ; Ubiquitin-Protein Ligases/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2004-02-21
    Description: The Sir2 deacetylase modulates organismal life-span in various species. However, the molecular mechanisms by which Sir2 increases longevity are largely unknown. We show that in mammalian cells, the Sir2 homolog SIRT1 appears to control the cellular response to stress by regulating the FOXO family of Forkhead transcription factors, a family of proteins that function as sensors of the insulin signaling pathway and as regulators of organismal longevity. SIRT1 and the FOXO transcription factor FOXO3 formed a complex in cells in response to oxidative stress, and SIRT1 deacetylated FOXO3 in vitro and within cells. SIRT1 had a dual effect on FOXO3 function: SIRT1 increased FOXO3's ability to induce cell cycle arrest and resistance to oxidative stress but inhibited FOXO3's ability to induce cell death. Thus, one way in which members of the Sir2 family of proteins may increase organismal longevity is by tipping FOXO-dependent responses away from apoptosis and toward stress resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brunet, Anne -- Sweeney, Lora B -- Sturgill, J Fitzhugh -- Chua, Katrin F -- Greer, Paul L -- Lin, Yingxi -- Tran, Hien -- Ross, Sarah E -- Mostoslavsky, Raul -- Cohen, Haim Y -- Hu, Linda S -- Cheng, Hwei-Ling -- Jedrychowski, Mark P -- Gygi, Steven P -- Sinclair, David A -- Alt, Frederick W -- Greenberg, Michael E -- NIHP30-HD18655/HD/NICHD NIH HHS/ -- P01 NS35138-17/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2004 Mar 26;303(5666):2011-5. Epub 2004 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, and Department of Neurobiology, Center for Blood Research (CBR) Institute for Biomedical Research, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976264" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Apoptosis ; Cell Cycle ; Cell Line ; Cell Nucleus/metabolism ; Cells, Cultured ; Cerebellum/cytology ; Forkhead Transcription Factors ; Gene Expression Profiling ; Gene Expression Regulation ; Histone Deacetylases/genetics/*metabolism ; Humans ; Intracellular Signaling Peptides and Proteins ; Mice ; Mice, Knockout ; Neurons/cytology ; *Oxidative Stress ; Phosphorylation ; Proteins/genetics ; Recombinant Proteins/metabolism ; Sirtuin 1 ; Sirtuins/genetics/*metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2004-03-06
    Description: Self-incompatibility (SI) response in Brassica is initiated by haplotype-specific interactions between the pollen-borne ligand S locus protein 11/SCR and its stigmatic S receptor kinase, SRK. This binding induces autophosphorylation of SRK, which is then thought to trigger a signaling cascade that leads to self-pollen rejection. A recessive mutation of the modifier (m) gene eliminates the SI response in stigma. Positional cloning of M has revealed that it encodes a membrane-anchored cytoplasmic serine/threonine protein kinase, designated M locus protein kinase (MLPK). Transient expression of MLPK restores the ability of mm papilla cells to reject self-pollen, suggesting that MLPK is a positive mediator of Brassica SI signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murase, Kohji -- Shiba, Hiroshi -- Iwano, Megumi -- Che, Fang-Sik -- Watanabe, Masao -- Isogai, Akira -- Takayama, Seiji -- New York, N.Y. -- Science. 2004 Mar 5;303(5663):1516-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15001779" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Brassica rapa/enzymology/genetics/*physiology ; Cell Membrane/*enzymology ; Cloning, Molecular ; Cytoplasm/enzymology ; Flowers/enzymology/*physiology ; Genes, Plant ; Haplotypes ; Membrane Proteins/chemistry/genetics/*metabolism ; Mutation ; Open Reading Frames ; Phosphorylation ; Physical Chromosome Mapping ; Plant Proteins ; Pollen/physiology ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2004-11-30
    Description: In vitro studies suggest a role for c-Jun N-terminal kinases (JNKs) in proatherogenic cellular processes. We show that atherosclerosis-prone ApoE-/- mice simultaneously lacking JNK2 (ApoE-/- JNK2-/- mice), but not ApoE-/- JNK1-/- mice, developed less atherosclerosis than do ApoE-/- mice. Pharmacological inhibition of JNK activity efficiently reduced plaque formation. Macrophages lacking JNK2 displayed suppressed foam cell formation caused by defective uptake and degradation of modified lipoproteins and showed increased amounts of the modified lipoprotein-binding and -internalizing scavenger receptor A (SR-A), whose phosphorylation was markedly decreased. Macrophage-restricted deletion of JNK2 was sufficient to decrease atherogenesis. Thus, JNK2-dependent phosphorylation of SR-A promotes uptake of lipids in macrophages, thereby regulating foam cell formation, a critical step in atherogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ricci, Romeo -- Sumara, Grzegorz -- Sumara, Izabela -- Rozenberg, Izabela -- Kurrer, Michael -- Akhmedov, Alexander -- Hersberger, Martin -- Eriksson, Urs -- Eberli, Franz R -- Becher, Burkhard -- Boren, Jan -- Chen, Mian -- Cybulsky, Myron I -- Moore, Kathryn J -- Freeman, Mason W -- Wagner, Erwin F -- Matter, Christian M -- Luscher, Thomas F -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1558-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research, Institute of Physiology, and Division of Cardiology, University Hospital Zurich, CH-8057 Zurich, Switzerland. romeo.ricci@cell.biol.ethz.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15567863" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD36/metabolism ; Aorta/chemistry/pathology ; Apolipoproteins E/genetics ; Arteriosclerosis/*metabolism/pathology ; Bone Marrow Transplantation ; Cells, Cultured ; Cholesterol/metabolism ; Cholesterol, Dietary/administration & dosage ; Diet, Atherogenic ; Endothelial Cells/physiology ; Foam Cells/*metabolism ; Lipoproteins, LDL/metabolism ; Macrophages/*metabolism ; Macrophages, Peritoneal/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitogen-Activated Protein Kinase 8/metabolism ; Mitogen-Activated Protein Kinase 9/genetics/*metabolism ; Muscle, Smooth, Vascular/cytology ; Myocytes, Smooth Muscle/physiology ; Phosphorylation ; Receptors, Immunologic/genetics/*metabolism ; Receptors, Scavenger ; Scavenger Receptors, Class A ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2004-03-20
    Description: The spatial organization of the microtubule cytoskeleton is thought to be directed by steady-state activity gradients of diffusible regulatory molecules. We visualized such intracellular gradients by monitoring the interaction between tubulin and a regulator of microtubule dynamics, stathmin, using a fluorescence resonance energy transfer (FRET) biosensor. These gradients were observed both during interphase in motile membrane protrusions and during mitosis around chromosomes, which suggests that a similar mechanism may contribute to the creation of polarized microtubule structures. These interaction patterns are likely to reflect phosphorylation of stathmin in these areas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Niethammer, Philipp -- Bastiaens, Philippe -- Karsenti, Eric -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1862-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15031504" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins ; Binding Sites ; Cell Line ; *Cell Movement ; Chromosomes/metabolism ; Cytosol/metabolism ; Fluorescence Resonance Energy Transfer ; Green Fluorescent Proteins ; Interphase ; Luminescent Proteins ; *Microtubule Proteins ; Microtubules/metabolism/ultrastructure ; *Mitosis ; Mutation ; Phosphoprotein Phosphatases/metabolism ; Phosphoproteins/genetics/*metabolism ; Phosphorylation ; Protein Binding ; Recombinant Fusion Proteins/metabolism ; Spindle Apparatus/ultrastructure ; Stathmin ; Swine ; Tetradecanoylphorbol Acetate/pharmacology ; Transfection ; Tubulin/*metabolism ; Xenopus ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2004-05-08
    Description: Self-regulating systems often use robust oscillatory circuits. One such system controls the chemotactic signaling mechanism of Dictyostelium, where pulses of adenosine 3',5'-monophosphate (cAMP) are generated with a periodicity of 7 minutes. We have observed spontaneous oscillations in activation of the mitogen-activated protein (MAP) kinase ERK2 that occur in phase with peaks of cAMP, and we show that ERK2 modulates cAMP levels through the phosphodiesterase RegA. Computer modeling and simulations of the underlying circuit faithfully account for the ability of the cells to spontaneously generate periodic pulses during specific stages of development. Similar oscillatory processes may occur in cells of many different species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maeda, Mineko -- Lu, Sijie -- Shaulsky, Gad -- Miyazaki, Yuji -- Kuwayama, Hidekazu -- Tanaka, Yoshimasa -- Kuspa, Adam -- Loomis, William F -- GM52359/GM/NIGMS NIH HHS/ -- GM62350/GM/NIGMS NIH HHS/ -- R01 GM052359/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 May 7;304(5672):875-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Graduate School of Science, Osaka University, Machikaneyama-cho 1-16, Toyonaka, Osaka 560-0043, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15131307" target="_blank"〉PubMed〈/a〉
    Keywords: 3',5'-Cyclic-AMP Phosphodiesterases ; Adenylyl Cyclases/metabolism ; Animals ; Computer Simulation ; Cyclic AMP/*metabolism ; Cyclic AMP-Dependent Protein Kinases/genetics/*metabolism ; Dictyostelium/enzymology/genetics/growth & development/*metabolism ; Enzyme Activation ; Mitogen-Activated Protein Kinase 1/genetics/*metabolism ; Models, Biological ; Mutagenesis, Site-Directed ; Mutation ; Phosphorylation ; Protozoan Proteins/genetics/metabolism ; Receptors, Cyclic AMP/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2004-11-20
    Description: The observation of the regulation of fast protein dynamics in a cellular context requires the development of reliable technologies. Here, a signal regulation cascade reliant on the stimulus-dependent acceleration of the bidirectional flow of mitogen-activated protein kinase (extracellular signal-regulated kinase) across the nuclear envelope was visualized by reversible protein highlighting. Light-induced conversion between the bright and dark states of a monomeric fluorescent protein engineered from a novel coral protein was employed. Because of its photochromic properties, the protein could be highlighted, erased, and highlighted again in a nondestructive manner, allowing direct observation of regulated fast nucleocytoplasmic shuttling of key signaling molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ando, Ryoko -- Mizuno, Hideaki -- Miyawaki, Atsushi -- New York, N.Y. -- Science. 2004 Nov 19;306(5700):1370-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15550670" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Animals ; Anthozoa ; COS Cells ; Cell Nucleus/*metabolism ; Cytoplasm/*metabolism ; Epidermal Growth Factor/pharmacology ; Fluorescence ; HeLa Cells ; Humans ; Hydrogen-Ion Concentration ; Light ; Luminescent Proteins/chemistry/*metabolism ; MAP Kinase Signaling System ; Microscopy, Confocal ; Mitogen-Activated Protein Kinase 3/*metabolism ; Molecular Sequence Data ; Nuclear Envelope/*metabolism ; Phosphorylation ; Protein Transport ; Recombinant Proteins/chemistry/metabolism ; Transfection ; beta Karyopherins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2004-05-15
    Description: Dynamic changes in chromatin structure, induced by posttranslational modification of histones, play a fundamental role in regulating eukaryotic transcription. Here we report that histone H2B is phosphorylated at evolutionarily conserved Ser33 (H2B-S33) by the carboxyl-terminal kinase domain (CTK) of the Drosophila TFIID subunit TAF1. Phosphorylation of H2B-S33 at the promoter of the cell cycle regulatory gene string and the segmentation gene giant coincides with transcriptional activation. Elimination of TAF1 CTK activity in Drosophila cells and embryos reduces transcriptional activation and phosphorylation of H2B-S33. These data reveal that H2B-S33 is a physiological substrate for the TAF1 CTK and that H2B-S33 phosphorylation is essential for transcriptional activation events that promote cell cycle progression and development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maile, Tobias -- Kwoczynski, Simona -- Katzenberger, Rebeccah J -- Wassarman, David A -- Sauer, Frank -- GM066204-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 May 14;304(5673):1010-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of California-Riverside, Riverside, CA 95121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15143281" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cell Cycle ; Cell Cycle Proteins ; DNA-Binding Proteins/genetics ; Drosophila/embryology/*genetics/metabolism ; Drosophila Proteins/chemistry/genetics/*metabolism ; Embryo, Nonmammalian/physiology ; Genes, Insect ; Histone Acetyltransferases ; Histones/chemistry/*metabolism ; Homeodomain Proteins/genetics ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Phosphoserine/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Protein Tyrosine Phosphatases/genetics ; RNA Interference ; Recombinant Proteins/chemistry/metabolism ; Repressor Proteins/genetics ; TATA-Binding Protein Associated Factors ; Transcription Factor TFIID/chemistry/genetics/*metabolism ; Transcription Factors ; *Transcription, Genetic ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-06-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sack, Fred D -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1461-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, OH 43210, USA. sack.1@osu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15178791" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*cytology/genetics/growth & development/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Cell Communication ; Cell Division ; Cell Membrane/metabolism ; Genes, Plant ; MAP Kinase Kinase Kinases/*metabolism ; MAP Kinase Signaling System ; Mutation ; Phosphorylation ; Plant Epidermis/*cytology/physiology ; Plant Leaves/*cytology/physiology ; Receptors, Cell Surface/metabolism ; Serine Endopeptidases/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2004-01-06
    Description: Interactions between ends from different DNA double-strand breaks (DSBs) can produce tumorigenic chromosome translocations. Two theories for the juxta-position of DSBs in translocations, the static "contact-first" and the dynamic "breakage-first" theory, differ fundamentally in their requirement for DSB mobility. To determine whether or not DSB-containing chromosome domains are mobile and can interact, we introduced linear tracks of DSBs in nuclei. We observed changes in track morphology within minutes after DSB induction, indicating movement of the domains. In a subpopulation of cells, the domains clustered. Juxtaposition of different DSB-containing chromosome domains through clustering, which was most extensive in G1 phase cells, suggests an adhesion process in which we implicate the Mre11 complex. Our results support the breakage-first theory to explain the origin of chromosomal translocations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aten, Jacob A -- Stap, Jan -- Krawczyk, Przemek M -- van Oven, Carel H -- Hoebe, Ron A -- Essers, Jeroen -- Kanaar, Roland -- New York, N.Y. -- Science. 2004 Jan 2;303(5654):92-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Microscopical Research, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704429" target="_blank"〉PubMed〈/a〉
    Keywords: Alpha Particles ; Animals ; Ataxia Telangiectasia/genetics/metabolism ; CHO Cells ; Cell Nucleus/metabolism/radiation effects ; *Chromosome Breakage ; Chromosomes, Human/*metabolism ; Chromosomes, Mammalian/metabolism ; Cricetinae ; Cricetulus ; DNA/*metabolism/radiation effects ; *DNA Damage ; DNA Repair ; DNA-Binding Proteins/metabolism ; Fibroblasts/metabolism ; G1 Phase ; G2 Phase ; HeLa Cells ; Histones/*metabolism ; Humans ; Phosphorylation ; Rad51 Recombinase ; S Phase ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2004-12-25
    Description: The ablation of the protein kinase Raf-1 renders cells hypersensitive to apoptosis despite normal regulation of extracellular signal-regulated kinases, which suggests that apoptosis protection is mediated by a distinct pathway. We used proteomic analysis of Raf-1 signaling complexes to show that Raf-1 counteracts apoptosis by suppressing the activation of mammalian sterile 20-like kinase (MST2). Raf-1 prevents dimerization and phosphorylation of the activation loop of MST2 independently of its protein kinase activity. Depletion of MST2 from Raf-1-/- mouse or human cells abrogated sensitivity to apoptosis, whereas overexpression of MST2 induced apoptosis. Conversely, depletion of Raf-1 from Raf-1+/+ mouse or human cells led to MST2 activation and apoptosis. The concomitant depletion of both Raf-1 and MST2 prevented apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Neill, Eric -- Rushworth, Linda -- Baccarini, Manuela -- Kolch, Walter -- New York, N.Y. -- Science. 2004 Dec 24;306(5705):2267-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15618521" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/metabolism ; *Apoptosis ; COS Cells ; Cell Line, Tumor ; Dimerization ; Humans ; Mice ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Proteomics ; Proto-Oncogene Proteins c-raf/genetics/*metabolism ; RNA, Small Interfering ; Signal Transduction ; Staurosporine/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2004-10-16
    Description: Obesity contributes to the development of type 2 diabetes, but the underlying mechanisms are poorly understood. Using cell culture and mouse models, we show that obesity causes endoplasmic reticulum (ER) stress. This stress in turn leads to suppression of insulin receptor signaling through hyperactivation of c-Jun N-terminal kinase (JNK) and subsequent serine phosphorylation of insulin receptor substrate-1 (IRS-1). Mice deficient in X-box-binding protein-1 (XBP-1), a transcription factor that modulates the ER stress response, develop insulin resistance. These findings demonstrate that ER stress is a central feature of peripheral insulin resistance and type 2 diabetes at the molecular, cellular, and organismal levels. Pharmacologic manipulation of this pathway may offer novel opportunities for treating these common diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ozcan, Umut -- Cao, Qiong -- Yilmaz, Erkan -- Lee, Ann-Hwee -- Iwakoshi, Neal N -- Ozdelen, Esra -- Tuncman, Gurol -- Gorgun, Cem -- Glimcher, Laurie H -- Hotamisligil, Gokhan S -- AI32412/AI/NIAID NIH HHS/ -- DK52539/DK/NIDDK NIH HHS/ -- P05-CA100707/CA/NCI NIH HHS/ -- T32-DK07703/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 15;306(5695):457-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Complex Diseases, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15486293" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/metabolism ; Animals ; Cells, Cultured ; DNA-Binding Proteins/genetics/metabolism ; Diabetes Mellitus, Type 2/*metabolism ; Endoplasmic Reticulum/*metabolism ; Glucose/metabolism ; Homeostasis ; Insulin/*metabolism ; Insulin Receptor Substrate Proteins ; *Insulin Resistance ; Liver/metabolism ; Membrane Proteins/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Obese ; Mitogen-Activated Protein Kinase 8 ; Mitogen-Activated Protein Kinases/metabolism ; Muscle, Skeletal/metabolism ; Mutation ; Nuclear Proteins/genetics/metabolism ; Obesity/*metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Rats ; Receptor, Insulin/metabolism ; Signal Transduction ; Transcription Factors ; Tunicamycin/pharmacology ; eIF-2 Kinase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2004-05-01
    Description: Receptor tyrosine kinase genes were sequenced in non-small cell lung cancer (NSCLC) and matched normal tissue. Somatic mutations of the epidermal growth factor receptor gene EGFR were found in 15of 58 unselected tumors from Japan and 1 of 61 from the United States. Treatment with the EGFR kinase inhibitor gefitinib (Iressa) causes tumor regression in some patients with NSCLC, more frequently in Japan. EGFR mutations were found in additional lung cancer samples from U.S. patients who responded to gefitinib therapy and in a lung adenocarcinoma cell line that was hypersensitive to growth inhibition by gefitinib, but not in gefitinib-insensitive tumors or cell lines. These results suggest that EGFR mutations may predict sensitivity to gefitinib.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paez, J Guillermo -- Janne, Pasi A -- Lee, Jeffrey C -- Tracy, Sean -- Greulich, Heidi -- Gabriel, Stacey -- Herman, Paula -- Kaye, Frederic J -- Lindeman, Neal -- Boggon, Titus J -- Naoki, Katsuhiko -- Sasaki, Hidefumi -- Fujii, Yoshitaka -- Eck, Michael J -- Sellers, William R -- Johnson, Bruce E -- Meyerson, Matthew -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1497-500. Epub 2004 Apr 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Medical Oncology and Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15118125" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Antineoplastic Agents/pharmacology/therapeutic use ; Carcinoma, Non-Small-Cell Lung/drug therapy/*genetics/metabolism ; Cell Line, Tumor ; Controlled Clinical Trials as Topic ; Enzyme Inhibitors/pharmacology/therapeutic use ; Female ; *Genes, erbB-1 ; Humans ; Japan ; Lung Neoplasms/drug therapy/*genetics/metabolism ; Male ; Molecular Sequence Data ; *Mutation ; Mutation, Missense ; Phosphorylation ; Protein Conformation ; Protein Structure, Tertiary ; Quinazolines/pharmacology/*therapeutic use ; Receptor, Epidermal Growth Factor/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Sequence Deletion ; Treatment Outcome ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2004-10-30
    Description: Thiamine diphosphate (ThDP) is used as a cofactor in many key metabolic enzymes. We present evidence that the ThDPs in the two active sites of the E1 (EC 1.2.4.1) component of the pyruvate dehydrogenase complex communicate over a distance of 20 angstroms by reversibly shuttling a proton through an acidic tunnel in the protein. This "proton wire" permits the co-factors to serve reciprocally as general acid/base in catalysis and to switch the conformation of crucial active-site peptide loops. This synchronizes the progression of chemical events and can account for the oligomeric organization, conformational asymmetry, and "ping-pong" kinetic properties of E1 and other thiamine-dependent enzymes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frank, Rene A W -- Titman, Christopher M -- Pratap, J Venkatesh -- Luisi, Ben F -- Perham, Richard N -- New York, N.Y. -- Science. 2004 Oct 29;306(5697):872-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15514159" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Dihydrolipoyllysine-Residue Acetyltransferase ; Geobacillus stearothermophilus/*enzymology ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Models, Molecular ; Mutation ; Phosphorylation ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Protons ; Pyruvate Dehydrogenase (Lipoamide)/*chemistry/genetics/*metabolism ; Pyruvate Dehydrogenase Complex/*chemistry/*metabolism ; Pyruvic Acid/metabolism ; Thiamine Pyrophosphate/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2004-06-05
    Description: Stomata are epidermal structures that modulate gas exchange between a plant and its environment. During development, stomata are specified and positioned nonrandomly by the integration of asymmetric cell divisions and intercellular signaling. The Arabidopsis mitogen-activated protein kinase kinase kinase gene, YODA, acts as part of a molecular switch controlling cell identities in the epidermis. Null mutations in YODA lead to excess stomata, whereas constitutive activation of YODA eliminated stomata. Transcriptome analysis of seedlings with altered YODA activity was used to identify potential stomatal regulatory genes. A putative transcription factor from this set was shown to regulate the developmental behavior of stomatal precursors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bergmann, Dominique C -- Lukowitz, Wolfgang -- Somerville, Chris R -- 5 F32GM064273-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1494-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Carnegie Institution, Department of Plant Biology, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15178800" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*cytology/genetics/growth & development/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Cell Differentiation ; Cell Division ; Cell Lineage ; DNA, Bacterial ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; MAP Kinase Kinase Kinases/genetics/*metabolism ; MAP Kinase Signaling System ; Mutation ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Phosphorylation ; Plant Epidermis/*cytology/growth & development/physiology ; Plant Leaves/*cytology/growth & development/physiology ; Plants, Genetically Modified ; Receptors, Cell Surface/metabolism ; Serine Endopeptidases/metabolism ; Transcription Factors/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-11-30
    Description: Natural killer (NK) cells are lymphocytes of the innate immune system that are involved in the early defenses against foreign cells, as well as autologous cells undergoing various forms of stress, such as microbial infection or tumor transformation. NK cell activation is controlled by a dynamic balance between complementary and antagonistic pathways that are initiated upon interaction with potential target cells. NK cells express an array of activating cell surface receptors that can trigger cytolytic programs, as well as cytokine or chemokine secretion. Some of these activating cell surface receptors initiate protein tyrosine kinase (PTK)-dependent pathways through noncovalent associations with transmembrane signaling adaptors that harbor intracytoplasmic ITAMs (immunoreceptor tyrosine-based activation motifs). Additional cell surface receptors that are not directly coupled to ITAMs also participate in NK cell activation. These include NKG2D, which is noncovalently associated to the DAP10 transmembrane signaling adaptor, as well as integrins and cytokine receptors. NK cells also express cell surface inhibitory receptors that antagonize activating pathways through protein tyrosine phosphatases (PTPs). These inhibitory cell surface receptors are characterized by intracytoplasmic ITIMs (immunoreceptor tyrosine-based inhibition motifs). The tyrosine-phosphorylation status of several signaling components that are substrates for both PTKs and PTPs is thus key to the propagation of the NK cell effector pathways. Understanding the integration of these multiple signals is central to the understanding and manipulation of NK cell effector signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vivier, Eric -- Nunes, Jacques A -- Vely, Frederic -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1517-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie de Marseille-Luminy, INSERM-CNRS-Univ. Mediterranee, Campus de Luminy, Case 906, 13288 Marseille cedex 09, France. vivier@ciml.univ-mrs.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15567854" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Amino Acid Motifs ; Animals ; Antibody-Dependent Cell Cytotoxicity ; Cytokines/metabolism ; Humans ; Killer Cells, Natural/immunology/*physiology ; Lymphocyte Activation ; Membrane Proteins/metabolism ; Mice ; Models, Immunological ; NK Cell Lectin-Like Receptor Subfamily K ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Tyrosine Phosphatases/metabolism ; Protein-Tyrosine Kinases/metabolism ; Receptors, Immunologic/chemistry/metabolism/physiology ; Receptors, Natural Killer Cell ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2004-05-29
    Description: Inherited defects in signaling pathways downstream of the insulin receptor have long been suggested to contribute to human type 2 diabetes mellitus. Here we describe a mutation in the gene encoding the protein kinase AKT2/PKBbeta in a family that shows autosomal dominant inheritance of severe insulin resistance and diabetes mellitus. Expression of the mutant kinase in cultured cells disrupted insulin signaling to metabolic end points and inhibited the function of coexpressed, wild-type AKT. These findings demonstrate the central importance of AKT signaling to insulin sensitivity in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258004/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258004/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉George, Stella -- Rochford, Justin J -- Wolfrum, Christian -- Gray, Sarah L -- Schinner, Sven -- Wilson, Jenny C -- Soos, Maria A -- Murgatroyd, Peter R -- Williams, Rachel M -- Acerini, Carlo L -- Dunger, David B -- Barford, David -- Umpleby, A Margot -- Wareham, Nicholas J -- Davies, Huw Alban -- Schafer, Alan J -- Stoffel, Markus -- O'Rahilly, Stephen -- Barroso, Ines -- 078986/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2004 May 28;304(5675):1325-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15166380" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Adipocytes/cytology/metabolism ; Adult ; Aged ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Catalytic Domain ; Cell Differentiation ; Cell Line ; Cell Nucleus/metabolism ; Cytosol/metabolism ; DNA-Binding Proteins/metabolism ; Diabetes Mellitus/*genetics/metabolism ; Female ; Genes, Dominant ; Hepatocyte Nuclear Factor 3-beta ; Humans ; Hyperinsulinism/genetics/metabolism ; Insulin/metabolism ; Insulin Resistance/*genetics ; Lipid Metabolism ; Male ; Middle Aged ; Molecular Sequence Data ; *Mutation, Missense ; Nuclear Proteins/metabolism ; Pedigree ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/*genetics/metabolism ; Proto-Oncogene Proteins/chemistry/*genetics/metabolism ; Proto-Oncogene Proteins c-akt ; Signal Transduction ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2004-05-01
    Description: A general caging method for proteins that are regulated by phosphorylation was used to study the in vivo biochemical action of cofilin and the subsequent cellular response. By acute and local activation of a chemically engineered, light-sensitive phosphocofilin mimic, we demonstrate that cofilin polymerizes actin, generates protrusions, and determines the direction of cell migration. We propose a role for cofilin that is distinct from its role as an actin-depolymerizing factor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghosh, Mousumi -- Song, Xiaoyan -- Mouneimne, Ghassan -- Sidani, Mazen -- Lawrence, David S -- Condeelis, John S -- GM38511/GM/NIGMS NIH HHS/ -- GM61034/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Apr 30;304(5671):743-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15118165" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Depolymerizing Factors ; Actins/*metabolism ; Animals ; Biopolymers ; Cell Line, Tumor ; *Cell Movement ; Light ; Lim Kinases ; Microfilament Proteins/genetics/*physiology ; Microinjections ; Mutation ; Phenylacetates/chemistry ; Phosphorylation ; Protein Binding ; Protein Kinases/metabolism ; Pseudopodia/physiology/ultrastructure ; RNA, Small Interfering ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2004-04-06
    Description: The complex containing the Mre11, Rad50, and Nbs1 proteins (MRN) is essential for the cellular response to DNA double-strand breaks, integrating DNA repair with the activation of checkpoint signaling through the protein kinase ATM (ataxia telangiectasia mutated). We demonstrate that MRN stimulates the kinase activity of ATM in vitro toward its substrates p53, Chk2, and histone H2AX. MRN makes multiple contacts with ATM and appears to stimulate ATM activity by facilitating the stable binding of substrates. Phosphorylation of Nbs1 is critical for MRN stimulation of ATM activity toward Chk2, but not p53. Kinase-deficient ATM inhibits wild-type ATM phosphorylation of Chk2, consistent with the dominant-negative effect of kinase-deficient ATM in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Ji-Hoon -- Paull, Tanya T -- CA94008/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2004 Apr 2;304(5667):93-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Institute of Cellular and Molecular Biology, University of Texas at Austin, 1 University Station, A4800, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15064416" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia/genetics ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/genetics/*metabolism ; Checkpoint Kinase 2 ; DNA/metabolism ; *DNA Repair Enzymes ; DNA-Binding Proteins/*metabolism ; Enzyme Activation ; Histones/metabolism ; Humans ; Mutation ; Mutation, Missense ; Nuclear Proteins/genetics/*metabolism ; Phosphorylation ; Protein Binding ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Recombinant Proteins/metabolism ; Tumor Suppressor Protein p53/metabolism ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-03-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goring, Daphne R -- Walker, John C -- New York, N.Y. -- Science. 2004 Mar 5;303(5663):1474-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany, University of Toronto, Toronto, M5S 3B2, Canada. goring@botany.utoronto.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15001763" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/enzymology/genetics/physiology ; Brassica rapa/enzymology/genetics/*physiology ; Carrier Proteins/metabolism ; Cell Membrane/*enzymology ; Flowers/enzymology/*physiology ; Genes, Plant ; Phosphorylation ; Plant Proteins/metabolism ; Pollen/physiology ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; *Signal Transduction ; *Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2004-10-23
    Description: Calmodulin (CaM) is a major effector for the intracellular actions of Ca2+ in nearly all cell types. We identified a CaM-binding protein, designated regulator of calmodulin signaling (RCS). G protein-coupled receptor (GPCR)-dependent activation of protein kinase A (PKA) led to phosphorylation of RCS at Ser55 and increased its binding to CaM. Phospho-RCS acted as a competitive inhibitor of CaM-dependent enzymes, including protein phosphatase 2B (PP2B, also called calcineurin). Increasing RCS phosphorylation blocked GPCR- and PP2B-mediated suppression of L-type Ca2+ currents in striatal neurons. Conversely, genetic deletion of RCS significantly increased this modulation. Through a molecular mechanism that amplifies GPCR- and PKA-mediated signaling and attenuates GPCR- and PP2B-mediated signaling, RCS synergistically increases the phosphorylation of key proteins whose phosphorylation is regulated by PKA and PP2B.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rakhilin, S V -- Olson, P A -- Nishi, A -- Starkova, N N -- Fienberg, A A -- Nairn, A C -- Surmeier, D J -- Greengard, P -- DA10044/DA/NIDA NIH HHS/ -- DA12958/DA/NIDA NIH HHS/ -- MH40899/MH/NIMH NIH HHS/ -- NS34696/NS/NINDS NIH HHS/ -- P01 DA010044/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 22;306(5696):698-701.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15499021" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/metabolism ; Calcineurin Inhibitors ; Calcium/*metabolism ; Calcium Channels, L-Type/metabolism ; Calcium Signaling ; Calmodulin/*metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Dopamine and cAMP-Regulated Phosphoprotein 32 ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neostriatum/cytology/metabolism ; Nerve Tissue Proteins/metabolism ; Neurons/metabolism ; Phosphoproteins/*metabolism ; Phosphorylation ; Receptor, Muscarinic M1/metabolism ; Receptors, Dopamine D1/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2004-10-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaplinsky, Nicholas J -- Barton, M Kathryn -- New York, N.Y. -- Science. 2004 Oct 29;306(5697):822-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15514147" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/genetics/growth & development/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Biological Transport ; Cell Membrane/metabolism ; Flowers/growth & development ; Indoleacetic Acids/*metabolism ; Membrane Transport Proteins/genetics/*metabolism ; Models, Biological ; Mutation ; Phosphorylation ; Plant Roots/metabolism ; Plant Shoots/metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-07-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diao, Aipo -- Lowe, Martin -- New York, N.Y. -- Science. 2004 Jul 2;305(5680):48-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK. martin.lowe@man.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15232093" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brefeldin A/pharmacology ; Carrier Proteins/*metabolism ; Cell Division ; Golgi Apparatus/*physiology/ultrastructure ; Intracellular Membranes/physiology/ultrastructure ; Membrane Proteins/metabolism ; *Mitosis ; Models, Biological ; Phosphorylation ; Rats ; *Transcription Factors ; Transport Vesicles/physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2004-08-28
    Description: Lipid phosphates can act as signaling molecules to influence cell division, apoptosis, and migration. wunen and wunen2 encode Drosophila lipid phosphate phosphohydrolases, integral membrane enzymes that dephosphorylate extracellular lipid phosphates. wun and wun2 act redundantly in somatic tissues to repel migrating germ cells, although the mechanism by which germ cells respond is unclear. Here, we report that wun2 also functions in germ cells, enabling them to perceive the wun/wun2-related signal from the soma. Upon Wun2 expression, cultured insect cells dephosphorylate and internalize exogenously supplied lipid phosphate. We propose that Drosophila germ cell migration and survival are controlled by competition for hydrolysis of a lipid phosphate between germ cells and soma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Renault, A D -- Sigal, Y J -- Morris, A J -- Lehmann, R -- GM54388/GM/NIGMS NIH HHS/ -- HD421900 RO1/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 24;305(5692):1963-6. Epub 2004 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Developmental Genetics Program, Skirball Institute and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15331773" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Movement/physiology ; Cell Survival/physiology ; Drosophila/*cytology ; Drosophila Proteins/genetics/*physiology ; Female ; Germ Cells/*physiology ; Humans ; Hydrolysis ; Lipid Metabolism ; Membrane Proteins/genetics/*physiology ; Phosphates/metabolism ; Phosphatidate Phosphatase/genetics/*physiology ; Phospholipids/*metabolism ; Phosphorylation ; Recombinant Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2004-12-25
    Description: Binding of Sonic Hedgehog (Shh) to Patched (Ptc) relieves the latter's tonic inhibition of Smoothened (Smo), a receptor that spans the cell membrane seven times. This initiates signaling which, by unknown mechanisms, regulates vertebrate developmental processes. We find that two molecules interact with mammalian Smo in an activation-dependent manner: G protein-coupled receptor kinase 2 (GRK2) leads to phosphorylation of Smo, and beta-arrestin 2 fused to green fluorescent protein interacts with Smo. These two processes promote endocytosis of Smo in clathrin-coated pits. Ptc inhibits association of beta-arrestin 2 with Smo, and this inhibition is relieved in cells treated with Shh. A Smo agonist stimulated and a Smo antagonist (cyclopamine) inhibited both phosphorylation of Smo by GRK2 and interaction of beta-arrestin 2 with Smo. beta-Arrestin 2 and GRK2 are thus potential mediators of signaling by activated Smo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Wei -- Ren, Xiu-Rong -- Nelson, Christopher D -- Barak, Larry S -- Chen, James K -- Beachy, Philip A -- de Sauvage, Frederic -- Lefkowitz, Robert J -- New York, N.Y. -- Science. 2004 Dec 24;306(5705):2257-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA. w.chen@duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15618519" target="_blank"〉PubMed〈/a〉
    Keywords: Arrestins/*metabolism ; Cell Line ; Cell Membrane/*metabolism ; Clathrin/metabolism ; Coated Pits, Cell-Membrane/metabolism ; Cyclic AMP-Dependent Protein Kinases/*metabolism ; Cyclohexylamines/pharmacology ; Cytosol/metabolism ; Dynamins/metabolism ; Endocytosis ; Hedgehog Proteins ; Humans ; Membrane Proteins/metabolism ; Phosphorylation ; Receptors, Cell Surface ; Receptors, G-Protein-Coupled/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Thiophenes/pharmacology ; Trans-Activators/metabolism ; Transfection ; Veratrum Alkaloids/pharmacology ; beta-Adrenergic Receptor Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2004-12-25
    Description: P-type ATPases extract energy by hydrolysis of adenosine triphosphate (ATP) in two steps, formation and breakdown of a covalent phosphoenzyme intermediate. This process drives active transport and countertransport of the cation pumps. We have determined the crystal structure of rabbit sarcoplasmic reticulum Ca2+ adenosine triphosphatase in complex with aluminum fluoride, which mimics the transition state of hydrolysis of the counterion-bound (protonated) phosphoenzyme. On the basis of structural analysis and biochemical data, we find this form to represent an occluded state of the proton counterions. Hydrolysis is catalyzed by the conserved Thr-Gly-Glu-Ser motif, and it exploits an associative nucleophilic reaction mechanism of the same type as phosphoryl transfer from ATP. On this basis, we propose a general mechanism of occluded transition states of Ca2+ transport and H+ countertransport coupled to phosphorylation and dephosphorylation, respectively.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olesen, Claus -- Sorensen, Thomas Lykke-Moller -- Nielsen, Rikke Christina -- Moller, Jesper Vuust -- Nissen, Poul -- New York, N.Y. -- Science. 2004 Dec 24;306(5705):2251-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Structural Biology, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15618517" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Aluminum Compounds/chemistry ; Amino Acid Motifs ; Animals ; Binding Sites ; Biological Transport, Active ; Calcium/metabolism ; Calcium-Transporting ATPases/*chemistry/*metabolism ; Chemistry, Physical ; Crystallization ; Crystallography, X-Ray ; Cytoplasm/metabolism ; Fluorides/chemistry ; Hydrolysis ; Ion Transport ; Models, Chemical ; Models, Molecular ; Phosphorylation ; Physicochemical Phenomena ; Protein Conformation ; Protein Structure, Tertiary ; *Protons ; Rabbits ; Sarcoplasmic Reticulum/enzymology ; Thapsigargin ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2004-07-27
    Description: Budding yeast protein phosphatase Cdc14 is sequestered in the nucleolus in an inactive state during interphase by the anchor protein Net1. Upon entry into anaphase, the Cdc14 early anaphase release (FEAR) network initiates dispersal of active Cdc14 throughout the cell. We report that the FEARnetwork promotes phosphorylation of Net1 by cyclin-dependent kinase (Cdk) complexed with cyclin B1 or cyclin B2. These phosphorylations appear to be required for FEAR and sustain the proper timing of late mitotic events. Thus, a regulatory circuit exists to ensure that the arbiter of the mitotic state, Cdk, sets in motion events that culminate in exit from mitosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Azzam, Ramzi -- Chen, Susan L -- Shou, Wenying -- Mah, Angie S -- Alexandru, Gabriela -- Nasmyth, Kim -- Annan, Roland S -- Carr, Steven A -- Deshaies, Raymond J -- GM59940/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 23;305(5683):516-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15273393" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Cell Cycle Proteins/genetics/*metabolism ; Cell Nucleolus/*metabolism ; Cyclin B/metabolism ; Cyclin B1 ; Cyclin-Dependent Kinases/*metabolism ; DNA, Ribosomal/metabolism ; Meiosis ; Metaphase ; *Mitosis ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Phosphorylation ; Protein Kinases/metabolism ; Protein Tyrosine Phosphatases/*metabolism ; Protein-Serine-Threonine Kinases ; Recombinant Proteins/metabolism ; Saccharomyces cerevisiae/cytology/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-11-30
    Description: Fungi are nonmotile organisms that obtain carbon from compounds in their immediate surroundings. Confronted with nutrient limitation, the yeast Saccharomyces cerevisiae undergoes a dimorphic transition, switching from spherical cells to filaments of adherent, elongated cells that can invade the substratum. A complex web of sensing mechanisms and cooperation among signaling networks (including a mitogen-activated protein kinase cascade, cyclic adenosine monophosphate-dependent protein kinase, and 5'-adenosine monophosphate-activated protein kinase) elicits the appropriate changes in physiology, cell cycle progression, cell polarity, and gene expression to achieve this differentiation. Highly related signaling processes control filamentation and virulence of many human fungal pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Truckses, Dagmar M -- Garrenton, Lindsay S -- Thorner, Jeremy -- CA-09041/CA/NCI NIH HHS/ -- GM-21841/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1509-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15567850" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases ; Adenylyl Cyclases/metabolism ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Glucose/metabolism ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinases/metabolism ; Multienzyme Complexes/metabolism ; Nitrogen/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Saccharomyces cerevisiae/*cytology/growth & development/*physiology ; Saccharomyces cerevisiae Proteins/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2004-12-18
    Description: Fat tissue produces a variety of secreted proteins (adipocytokines) with important roles in metabolism. We isolated a newly identified adipocytokine, visfatin, that is highly enriched in the visceral fat of both humans and mice and whose expression level in plasma increases during the development of obesity. Visfatin corresponds to a protein identified previously as pre-B cell colony-enhancing factor (PBEF), a 52-kilodalton cytokine expressed in lymphocytes. Visfatin exerted insulin-mimetic effects in cultured cells and lowered plasma glucose levels in mice. Mice heterozygous for a targeted mutation in the visfatin gene had modestly higher levels of plasma glucose relative to wild-type littermates. Surprisingly, visfatin binds to and activates the insulin receptor. Further study of visfatin's physiological role may lead to new insights into glucose homeostasis and/or new therapies for metabolic disorders such as diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fukuhara, Atsunori -- Matsuda, Morihiro -- Nishizawa, Masako -- Segawa, Katsumori -- Tanaka, Masaki -- Kishimoto, Kae -- Matsuki, Yasushi -- Murakami, Mirei -- Ichisaka, Tomoko -- Murakami, Hiroko -- Watanabe, Eijiro -- Takagi, Toshiyuki -- Akiyoshi, Megumi -- Ohtsubo, Tsuguteru -- Kihara, Shinji -- Yamashita, Shizuya -- Makishima, Makoto -- Funahashi, Tohru -- Yamanaka, Shinya -- Hiramatsu, Ryuji -- Matsuzawa, Yuji -- Shimomura, Iichiro -- New York, N.Y. -- Science. 2005 Jan 21;307(5708):426-30. Epub 2004 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine and Pathophysiology, Graduate School of Medicine, and Department of Organismal Biosystems, Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604363" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/drug effects/metabolism ; Adipose Tissue/*metabolism ; Animals ; Binding Sites ; Blood Glucose/analysis ; Cell Line ; Cells, Cultured ; Cytokines/blood/genetics/*metabolism/pharmacology ; Diabetes Mellitus, Type 2/metabolism ; Dose-Response Relationship, Drug ; Female ; Gene Expression Profiling ; Gene Expression Regulation/drug effects ; Gene Targeting ; Humans ; Insulin/blood/*metabolism ; Insulin Resistance ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Molecular Mimicry ; Muscle Cells/metabolism ; Nicotinamide Phosphoribosyltransferase ; Phosphorylation ; Receptor, Insulin/metabolism ; Recombinant Proteins/pharmacology ; Signal Transduction ; Subcutaneous Tissue ; Viscera
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heintz, Nathaniel -- New York, N.Y. -- Science. 2003 Jul 4;301(5629):59-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Rockefeller University, New York, NY 10021, USA. heintz@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12843383" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Substitution ; Animals ; Ataxin-1 ; Ataxins ; Cell Nucleus/metabolism ; Disease Progression ; Mice ; Mice, Transgenic ; Mutation ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Peptides ; Phosphorylation ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Purkinje Cells/metabolism/ultrastructure ; Signal Transduction ; Spinocerebellar Ataxias/etiology/genetics/pathology/*physiopathology ; *Trinucleotide Repeat Expansion ; Tyrosine 3-Monooxygenase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gundersen, Gregg G -- Bretscher, Anthony -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2040-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Cell Biology and Department of Pathology, Columbia University, New York, NY 10032, USA. ggg1@columbia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829769" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; CDC28 Protein Kinase, S cerevisiae/*metabolism ; Cell Cycle Proteins/metabolism ; Cell Division ; Cell Polarity ; Cyclins/metabolism ; Microtubule Proteins/metabolism ; Microtubule-Organizing Center/*metabolism/ultrastructure ; Microtubules/*metabolism/ultrastructure ; Models, Biological ; Mutation ; Myosin Heavy Chains/metabolism ; Myosin Type V/metabolism ; Nuclear Proteins/*metabolism ; Phosphorylation ; Protein Transport ; Saccharomyces cerevisiae/cytology/metabolism/ultrastructure ; Saccharomyces cerevisiae Proteins/metabolism ; Spindle Apparatus/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2003-07-05
    Description: Raf kinases have been linked to endothelial cell survival. Here, we show that basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) differentially activate Raf, resulting in protection from distinct pathways of apoptosis in human endothelial cells and chick embryo vasculature. bFGF activated Raf-1 via p21-activated protein kinase-1 (PAK-1) phosphorylation of serines 338 and 339, resulting in Raf-1 mitochondrial translocation and endothelial cell protection from the intrinsic pathway of apoptosis, independent of the mitogen-activated protein kinase kinase-1 (MEK1). In contrast, VEGF activated Raf-1 via Src kinase, leading to phosphorylation of tyrosines 340 and 341 and MEK1-dependent protection from extrinsic-mediated apoptosis. These findings implicate Raf-1 as a pivotal regulator of endothelial cell survival during angiogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alavi, Alireza -- Hood, John D -- Frausto, Ricardo -- Stupack, Dwayne G -- Cheresh, David A -- CA45726/CA/NCI NIH HHS/ -- CA50286/CA/NCI NIH HHS/ -- CA75924/CA/NCI NIH HHS/ -- P01 CA78045/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Jul 4;301(5629):94-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12843393" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Cell Survival ; Cells, Cultured ; Chick Embryo ; Endothelial Growth Factors/pharmacology ; Endothelium, Vascular/*cytology/drug effects ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Fibroblast Growth Factor 2/pharmacology ; Flavonoids/pharmacology ; Humans ; Intercellular Signaling Peptides and Proteins/pharmacology ; Lymphokines/pharmacology ; MAP Kinase Kinase 1 ; Mitochondria/metabolism ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinases/metabolism ; Neovascularization, Pathologic ; *Neovascularization, Physiologic/drug effects ; Phosphorylation ; Point Mutation ; Protein Transport ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Proto-Oncogene Proteins B-raf ; Proto-Oncogene Proteins c-raf/chemistry/genetics/*metabolism ; Signal Transduction ; Umbilical Veins ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors ; p21-Activated Kinases ; src-Family Kinases/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allen, John F -- New York, N.Y. -- Science. 2003 Mar 7;299(5612):1530-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biochemistry, Center for Chemistry and Chemical Engineering, Box 124, Lund University, SE-221 00 Lund, Sweden. john.allen@plantbio.lu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12624254" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/chemistry/genetics/isolation & purification/metabolism ; Animals ; Binding Sites ; Chlamydomonas reinhardtii/*enzymology/genetics/metabolism ; Chlorophyll/metabolism ; Electron Transport ; Fluorescence ; Gene Library ; Light ; Light-Harvesting Protein Complexes ; Models, Biological ; Mutation ; Oxidation-Reduction ; Phosphorylation ; Photosynthesis ; Photosynthetic Reaction Center Complex Proteins/*metabolism ; Plastoquinone/metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*isolation & ; purification/*metabolism ; Signal Transduction ; Thylakoids/*enzymology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2003-11-01
    Description: Mutations in MeCP2, which encodes a protein that has been proposed to function as a global transcriptional repressor, are the cause of Rett syndrome (RT T), an X-linked progressive neurological disorder. Although the selective inactivation of MeCP2 in neurons is sufficient to confer a Rett-like phenotype in mice, the specific functions of MeCP2 in postmitotic neurons are not known. We find that MeCP2 binds selectively to BDNF promoter III and functions to repress expression of the BDNF gene. Membrane depolarization triggers the calcium-dependent phosphorylation and release of MeCP2 from BDNF promoter III, thereby facilitating transcription. These studies indicate that MeCP2 plays a key role in the control of neuronal activity-dependent gene regulation and suggest that the deregulation of this process may underlie the pathology of RT T.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Wen G -- Chang, Qiang -- Lin, Yingxi -- Meissner, Alexander -- West, Anne E -- Griffith, Eric C -- Jaenisch, Rudolf -- Greenberg, Michael E -- HD 18655/HD/NICHD NIH HHS/ -- NS28829/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 31;302(5646):885-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593183" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor/*genetics ; Calcium/*metabolism ; Cell Membrane/physiology ; Cells, Cultured ; *Chromosomal Proteins, Non-Histone ; Cloning, Molecular ; CpG Islands ; DNA Methylation ; DNA-Binding Proteins/*metabolism ; Electrophoretic Mobility Shift Assay ; *Gene Expression Regulation ; Gene Silencing ; Histones/metabolism ; Methyl-CpG-Binding Protein 2 ; Methylation ; Mice ; Mice, Knockout ; Neurons/metabolism/physiology ; Phosphorylation ; Potassium Chloride/pharmacology ; Precipitin Tests ; Promoter Regions, Genetic ; Rats ; *Repressor Proteins ; Rett Syndrome/genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2003-11-25
    Description: Three distinct classes of drugs: dopaminergic agonists (such as D-amphetamine), serotonergic agonists (such as LSD), and glutamatergic antagonists (such as PCP) all induce psychotomimetic states in experimental animals that closely resemble schizophrenia symptoms in humans. Here we implicate a common signaling pathway in mediating these effects. In this pathway, dopamine- and an adenosine 3',5'-monophosphate (cAMP)-regulated phospho-protein of 32 kilodaltons (DARPP-32) is phosphorylated or dephosphorylated at three sites, in a pattern predicted to cause a synergistic inhibition of protein phosphatase-1 and concomitant regulation of its downstream effector proteins glycogen synthesis kinase-3 (GSK-3), cAMP response element-binding protein (CREB), and c-Fos. In mice with a genetic deletion of DARPP-32 or with point mutations in phosphorylation sites of DARPP-32, the effects of D-amphetamine, LSD, and PCP on two behavioral parameters-sensorimotor gating and repetitive movements-were strongly attenuated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Svenningsson, Per -- Tzavara, Eleni T -- Carruthers, Robert -- Rachleff, Ilan -- Wattler, Sigrid -- Nehls, Michael -- McKinzie, David L -- Fienberg, Allen A -- Nomikos, George G -- Greengard, Paul -- DA10044/DA/NIDA NIH HHS/ -- MH40899/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 21;302(5649):1412-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14631045" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology ; Animals ; Brain/drug effects/*metabolism ; Central Nervous System Agents/*pharmacology ; Corpus Striatum/drug effects/metabolism ; Cyclic AMP Response Element-Binding Protein/metabolism ; Dextroamphetamine/pharmacology ; Dopamine/metabolism ; Dopamine and cAMP-Regulated Phosphoprotein 32 ; Frontal Lobe/drug effects/metabolism ; Genes, fos ; Glycogen Synthase Kinase 3/metabolism ; Lysergic Acid Diethylamide/pharmacology ; Male ; Mice ; Mice, Knockout ; Motor Activity/drug effects ; Nerve Tissue Proteins/metabolism ; Phencyclidine/pharmacology ; Phosphoprotein Phosphatases/antagonists & inhibitors ; Phosphoproteins/*metabolism ; Phosphorylation ; Protein Phosphatase 1 ; RNA, Messenger/genetics/metabolism ; Receptors, Dopamine D1/genetics/metabolism ; Reflex, Startle/drug effects ; *Signal Transduction ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2003-01-25
    Description: Disruption of the adaptor protein ELF, a beta-spectrin, leads to disruption of transforming growth factor-beta (TGF-beta) signaling by Smad proteins in mice. Elf-/- mice exhibit a phenotype similar to smad2+/-/smad3+/- mutant mice of midgestational death due to gastrointestinal, liver, neural, and heart defects. We show that TGF-beta triggers phosphorylation and association of ELF with Smad3 and Smad4, followed by nuclear translocation. ELF deficiency results in mislocalization of Smad3 and Smad4 and loss of the TGF-beta-dependent transcriptional response, which could be rescued by overexpression of the COOH-terminal region of ELF. This study reveals an unexpected molecular link between a major dynamic scaffolding protein and a key signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Yi -- Katuri, Varalakshmi -- Dillner, Allan -- Mishra, Bibhuti -- Deng, Chu-Xia -- Mishra, Lopa -- R01 DK56111/DK/NIDDK NIH HHS/ -- R01 DK58637/DK/NIDDK NIH HHS/ -- R03 DK53861/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 24;299(5606):574-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Biology, Department of Medicine, Georgetown University, Washington, DC 20007, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12543979" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple ; Animals ; Carrier Proteins/metabolism ; Cell Membrane/metabolism ; Cell Nucleus/metabolism ; Contractile Proteins/metabolism ; DNA-Binding Proteins/metabolism ; Embryonic and Fetal Development ; Filamins ; Gene Targeting ; Genes, fos ; Liver/abnormalities/embryology/*metabolism ; Mice ; Mice, Knockout ; Microfilament Proteins/metabolism ; Microscopy, Confocal ; Mutation ; Phenotype ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; *Signal Transduction ; Smad2 Protein ; Smad3 Protein ; Smad4 Protein ; Spectrin/genetics/*metabolism ; Trans-Activators/metabolism ; Transcriptional Activation ; Transforming Growth Factor beta/*metabolism/pharmacology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2003-06-07
    Description: Cytokines are inflammatory mediators important in responding to pathogens and other foreign challenges. Interleukin-4 (IL-4) and IL-13 are two cytokines produced by T helper type 2 cells, mast cells, and basophils. In addition to their physiological roles, these cytokines are also implicated in pathological conditions such as asthma and allergy. IL-4 can stimulate two receptors, type I and type II, whereas IL-13 signaling is mediated only by the type II receptor (see the STKE Connections Maps). These cytokines activate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling cascades, which may contribute to allergic responses. In addition, stimulation of the phosphatidylinositol 3-kinase (PI3K) pathway through recruitment of members of the insulin receptor substrate family may contribute to survival and proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelly-Welch, Ann E -- Hanson, Erica M -- Boothby, Mark R -- Keegan, Achsah D -- AI38985/AI/NIAID NIH HHS/ -- AI45662/AI/NIAID NIH HHS/ -- AI49460/AI/NIAID NIH HHS/ -- GM42550/GM/NIGMS NIH HHS/ -- HL61752/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 Jun 6;300(5625):1527-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Holland Laboratory, American Red Cross, Rockville, MD 20855, and the Institute for Biomedical Sciences, George Washington Medical Center, Washington, DC 20037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12791978" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Asthma/immunology/metabolism ; Humans ; Hypersensitivity/immunology/metabolism ; Interleukin-13/*metabolism ; Interleukin-13 Receptor alpha1 Subunit ; Interleukin-4/*metabolism ; Lymphocyte Activation ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/metabolism ; Receptors, Antigen, T-Cell/immunology/metabolism ; Receptors, Interleukin/chemistry/metabolism ; Receptors, Interleukin-13 ; Receptors, Interleukin-4/chemistry/metabolism ; STAT6 Transcription Factor ; *Signal Transduction ; T-Lymphocytes/immunology ; Trans-Activators/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harberd, Nicholas P -- New York, N.Y. -- Science. 2003 Mar 21;299(5614):1853-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉John Innes Centre, Norwich, Norfolk NR4 7UH, UK. nicholas.harberd@bbsrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12649470" target="_blank"〉PubMed〈/a〉
    Keywords: Cloning, Molecular ; Genes, Plant ; Gibberellins/*metabolism/pharmacology ; Indoleacetic Acids/metabolism ; Ligases/metabolism ; Models, Biological ; Mutation ; Oryza/genetics/*growth & development/metabolism ; Peptide Hydrolases/metabolism ; Phosphorylation ; Plant Proteins/*genetics/*metabolism ; *Proteasome Endopeptidase Complex ; Signal Transduction ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-05-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Bryan R G -- Sen, Ganes C -- New York, N.Y. -- Science. 2003 May 16;300(5622):1100-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, OH 44195, USA. williab@ccf.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12750505" target="_blank"〉PubMed〈/a〉
    Keywords: DNA-Binding Proteins/*immunology/physiology ; Gene Expression Regulation ; Hepacivirus/immunology/*physiology ; I-kappa B Kinase ; Interferon Regulatory Factor-3 ; Interferons/*biosynthesis/genetics ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Transcription Factors/*immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2003-06-07
    Description: Insulin resistance is a major hallmark in the development of type II diabetes, which is characterized by the failure of insulin to promote glucose uptake in muscle and to suppress glucose production in liver. The serine-threonine kinase Akt (PKB) is a principal target of insulin signaling that inhibits hepatic glucose output when glucose is available from food. Here we show that TRB3, a mammalian homolog of Drosophila tribbles, functions as a negative modulator of Akt. TRB3 expression is induced in liver under fasting conditions, and TRB3 disrupts insulin signaling by binding directly to Akt and blocking activation of the kinase. Amounts of TRB3 RNA and protein were increased in livers of db/db diabetic mice compared with those in wild-type mice. Hepatic overexpression of TRB3 in amounts comparable to those in db/db mice promoted hyperglycemia and glucose intolerance. Our results suggest that, by interfering with Akt activation, TRB3 contributes to insulin resistance in individuals with susceptibility to type II diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Du, Keyong -- Herzig, Stephan -- Kulkarni, Rohit N -- Montminy, Marc -- New York, N.Y. -- Science. 2003 Jun 6;300(5625):1574-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Peptide Biology Laboratories, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12791994" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics/physiology ; Amino Acid Substitution ; Animals ; Blood Glucose/metabolism ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line ; Diabetes Mellitus/genetics/metabolism ; Enzyme Activation ; Fasting ; Genetic Vectors ; Glucose/metabolism ; Glucose Intolerance ; Glycogen Synthase Kinase 3/metabolism ; Humans ; Insulin/blood/*metabolism ; Insulin Resistance ; Insulin-Like Growth Factor I/pharmacology ; Liver/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; Polymerase Chain Reaction ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; RNA Interference ; Rats ; Repressor Proteins ; Signal Transduction ; Transfection ; Transgenes ; Tumor Cells, Cultured ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Caldecott, Keith W -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):579-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genome Damage and Stability Center, University of Sussex, Brighton BN1 9RR, UK. k.w.caldecott@sussex.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576410" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; BRCA1 Protein/*chemistry/*metabolism ; Carrier Proteins/chemistry/metabolism ; *Cell Cycle Proteins ; DNA Damage ; DNA Repair ; DNA-Binding Proteins/chemistry/metabolism ; E2F Transcription Factors ; Models, Molecular ; Nuclear Proteins ; Peptide Library ; Phosphopeptides/*metabolism ; Phosphorylation ; Protein Binding ; Protein Structure, Secondary ; *Protein Structure, Tertiary ; Proteins/chemistry/*metabolism ; Proteomics ; RNA Helicases/chemistry/metabolism ; *Signal Transduction ; Transcription Factors/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2003-11-15
    Description: Prefoldins (PFDs) are members of a recently identified, small-molecular weight protein family able to assemble into molecular chaperone complexes. Here we describe an unusually large member of this family, termed URI, that forms complexes with other small-molecular weight PFDs and with RPB5, a shared subunit of all three RNA polymerases. Functional analysis of the yeast and human orthologs of URI revealed that both are targets of nutrient signaling and participate in gene expression controlled by the TOR kinase. Thus, URI is a component of a signaling pathway that coordinates nutrient availability with gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gstaiger, Matthias -- Luke, Brian -- Hess, Daniel -- Oakeley, Edward J -- Wirbelauer, Christiane -- Blondel, Marc -- Vigneron, Marc -- Peter, Matthias -- Krek, Wilhelm -- New York, N.Y. -- Science. 2003 Nov 14;302(5648):1208-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institut, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14615539" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/*metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; DNA-Binding Proteins/metabolism ; DNA-Directed RNA Polymerases/metabolism ; GATA Transcription Factors ; *Gene Expression Regulation/drug effects ; Humans ; *Intracellular Signaling Peptides and Proteins ; Molecular Sequence Data ; Phosphorylation ; Protein Kinases/metabolism ; Protein Subunits/metabolism ; RNA Interference ; Repressor Proteins/metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; *Signal Transduction ; Sirolimus/pharmacology ; TOR Serine-Threonine Kinases ; Trans-Activators/metabolism ; Transcription Factors/metabolism ; *Transcription, Genetic/drug effects ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2003-10-25
    Description: Paracaspase (MALT1), a member of an evolutionarily conserved superfamily of caspase-like proteins, has been shown to bind and colocalize with the protein Bcl10 in vitro and, because of this association, has been suggested to be involved in the CARMA1-Bcl10 pathway of antigen-induced nuclear factor kappaB (NF-kappaB) activation. We demonstrate that primary T and B lymphocytes from paracaspase-deficient mice are defective in antigen-receptor-induced NF-kappaB activation, cytokine production, and proliferation. Paracaspase acts downstream of Bcl10 to induce NF-kappaB activation and is required for the normal development of B cells, indicating that paracaspase provides the missing link between Bcl10 and activation of the IkappaB kinase complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruefli-Brasse, Astrid A -- French, Dorothy M -- Dixit, Vishva M -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1581-4. Epub 2003 Oct 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Oncology Department, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576442" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Animals ; Antibody Formation ; Antigens, CD/analysis ; B-Lymphocyte Subsets/immunology/physiology ; B-Lymphocytes/*immunology/metabolism/physiology ; Caspases ; Cell Differentiation ; Cell Division ; Cell Survival ; Cells, Cultured ; Cytokines/metabolism ; Gene Deletion ; Gene Targeting ; Guanylate Kinase ; I-kappa B Kinase ; *Lymphocyte Activation ; Lymphoma, B-Cell, Marginal Zone/chemistry/*metabolism ; Mice ; Mice, Inbred C57BL ; NF-kappa B/*metabolism ; Neoplasm Proteins/chemistry/*metabolism ; Nucleoside-Phosphate Kinase/metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Receptors, Antigen, B-Cell/metabolism ; Receptors, Antigen, T-Cell/metabolism ; Signal Transduction ; T-Lymphocyte Subsets/immunology/physiology ; T-Lymphocytes/*immunology/metabolism/physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2003-02-22
    Description: We have developed a proteomic approach for identifying phosphopeptide binding domains that modulate kinase-dependent signaling pathways. An immobilized library of partially degenerate phosphopeptides biased toward a particular protein kinase phosphorylation motif is used to isolate phospho-binding domains that bind to proteins phosphorylated by that kinase. Applying this approach to cyclin-dependent kinases (Cdks), we identified the polo-box domain (PBD) of the mitotic kinase polo-like kinase 1 (Plk1) as a specific phosphoserine (pSer) or phosphothreonine (pThr) binding domain and determined its optimal binding motif. This motif is present in known Plk1 substrates such as Cdc25, and an optimal phosphopeptide containing the motif disrupted PBD-substrate binding and localization of the PBD to centrosomes. This finding reveals how Plk1 can localize to specific sites within cells in response to Cdk phosphorylation at those sites and provides a structural mechanism for targeting the Plk1 kinase domain to its substrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elia, Andrew E H -- Cantley, Lewis C -- Yaffe, Michael B -- GM52981/GM/NIGMS NIH HHS/ -- GM56203/GM/NIGMS NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Feb 21;299(5610):1228-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12595692" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Calorimetry ; Cell Cycle Proteins ; Centrosome/metabolism ; HeLa Cells ; Humans ; Ligands ; Mitosis ; Peptide Library ; Phosphopeptides/chemistry/*metabolism ; Phosphorylation ; Phosphoserine/*metabolism ; Phosphothreonine/*metabolism ; Point Mutation ; Protein Binding ; Protein Kinases/*chemistry/genetics/*metabolism ; *Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases ; Proteomics ; Proto-Oncogene Proteins ; Signal Transduction ; cdc25 Phosphatases/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2003-09-06
    Description: Wnt proteins, regulators of development in many organisms, bind to seven transmembrane-spanning (7TMS) receptors called frizzleds, thereby recruiting the cytoplasmic molecule dishevelled (Dvl) to the plasma membrane.Frizzled-mediated endocytosis of Wg (a Drosophila Wnt protein) and lysosomal degradation may regulate the formation of morphogen gradients. Endocytosis of Frizzled 4 (Fz4) in human embryonic kidney 293 cells was dependent on added Wnt5A protein and was accomplished by the multifunctional adaptor protein beta-arrestin 2 (betaarr2), which was recruited to Fz4 by binding to phosphorylated Dvl2. These findings provide a previously unrecognized mechanism for receptor recruitment of beta-arrestin and demonstrate that Dvl plays an important role in the endocytosis of frizzled, as well as in promoting signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Wei -- ten Berge, Derk -- Brown, Jeff -- Ahn, Seungkirl -- Hu, Liaoyuan A -- Miller, William E -- Caron, Marc G -- Barak, Larry S -- Nusse, Roel -- Lefkowitz, Robert J -- HL 16037/HL/NHLBI NIH HHS/ -- HL 61365/HL/NHLBI NIH HHS/ -- NS 19576/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 5;301(5638):1391-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12958364" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Arrestins/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Clathrin/metabolism ; Cytoplasm/metabolism ; *Endocytosis ; Frizzled Receptors ; Humans ; Mice ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Kinase C/antagonists & inhibitors/metabolism ; Proteins/genetics/*metabolism ; Proto-Oncogene Proteins/*metabolism/pharmacology ; RNA, Small Interfering ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Wnt Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2003-10-25
    Description: The carboxyl-terminal domain (BRCT) of the Breast Cancer Gene 1 (BRCA1) protein is an evolutionarily conserved module that exists in a large number of proteins from prokaryotes to eukaryotes. Although most BRCT domain-containing proteins participate in DNA-damage checkpoint or DNA-repair pathways, or both, the function of the BRCT domain is not fully understood. We show that the BRCA1 BRCT domain directly interacts with phosphorylated BRCA1-Associated Carboxyl-terminal Helicase (BACH1). This specific interaction between BRCA1 and phosphorylated BACH1 is cell cycle regulated and is required for DNA damage-induced checkpoint control during the transition from G2 to M phase of the cell cycle. Further, we show that two other BRCT domains interact with their respective physiological partners in a phosphorylation-dependent manner. Thirteen additional BRCT domains also preferentially bind phospho-peptides rather than nonphosphorylated control peptides. These data imply that the BRCT domain is a phospho-protein binding domain involved in cell cycle control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Xiaochun -- Chini, Claudia Christiano Silva -- He, Miao -- Mer, Georges -- Chen, Junjie -- CA89239/CA/NCI NIH HHS/ -- CA92312/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):639-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncology, Mayo Clinic and Foundation, Rochester, MN 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576433" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; BRCA1 Protein/*chemistry/*metabolism ; Carrier Proteins/chemistry/metabolism ; Cell Cycle ; *Cell Cycle Proteins ; Cell Line ; DNA Damage ; DNA Repair ; *DNA-Binding Proteins ; E2F Transcription Factors ; G2 Phase ; Humans ; Mitosis ; Mutation ; Nuclear Proteins ; Peptide Library ; Phosphoprotein Phosphatases/chemistry/metabolism ; Phosphoproteins/chemistry/genetics/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA Helicases/chemistry/genetics/*metabolism ; RNA Polymerase II/metabolism ; RNA, Small Interfering ; Recombinant Fusion Proteins/chemistry/metabolism ; Transcription Factors/metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-07
    Description: Cells migrating directionally toward a chemoattractant source display a highly polarized cytoskeletal organization, with F-actin localized predominantly at the anterior and myosin II at the lateral and posterior regions. Dictyostelium discoideum has proven a useful system for elucidating signaling pathways that regulate this chemotactic response. During development, extracellular adenosine 3', 5' monophosphate (cAMP) functions as a primary signal to activate cell surface cAMP receptors (cARs). These receptors transduce different signals depending on whether or not they are coupled to heterotrimeric guanine nucleotide-binding proteins (G proteins) (see the STKE Connections Maps). Multiple G protein-stimulated pathways interact to establish polarity in chemotaxing D. discoideum cells by localizing F-actin at their leading edge and by regulating the phosphorylation state and assembly of myosin II. Many of the molecular interactions described are fundamental to the regulation of chemotaxis in other eukaryotic cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimmel, Alan R -- Parent, Carole A -- New York, N.Y. -- Science. 2003 Jun 6;300(5625):1525-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12791977" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Cell Polarity ; *Chemotaxis ; Cyclic AMP/metabolism ; Cyclic GMP/metabolism ; Dictyostelium/*physiology ; Guanylate Cyclase/metabolism ; Heterotrimeric GTP-Binding Proteins/*metabolism ; Myosin Type II/metabolism ; PTEN Phosphohydrolase ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphoric Monoester Hydrolases/metabolism ; Phosphorylation ; Protozoan Proteins/metabolism ; Pseudopodia/physiology ; Receptors, Cyclic AMP/metabolism ; *Signal Transduction ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-11-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, Ingrid -- New York, N.Y. -- Science. 2003 Nov 21;302(5649):1320-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14631015" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/metabolism ; Calcium/metabolism ; Calmodulin/metabolism ; Carbon Monoxide/*metabolism ; Ejaculation ; Enzyme Activation ; Heme Oxygenase (Decyclizing)/genetics/*metabolism ; Intestines/innervation/physiology ; Neurons/metabolism ; Neurotransmitter Agents/*metabolism ; Nitric Oxide/metabolism ; Phosphorylation ; *Signal Transduction ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2003-04-12
    Description: Glucose modulates many vital processes in photosynthetic plants. Analyses of Arabidopsis glucose insensitive2 (gin2) mutants define the physiological functions of a specific hexokinase (HXK1) in the plant glucose-signaling network. HXK1 coordinates intrinsic signals with extrinsic light intensity. HXK1 mutants lacking catalytic activity still support various signaling functions in gene expression, cell proliferation, root and inflorescence growth, and leaf expansion and senescence, thus demonstrating the uncoupling of glucose signaling from glucose metabolism. The gin2 mutants are also insensitive to auxin and hypersensitive to cytokinin. Plants use HXK as a glucose sensor to interrelate nutrient, light, and hormone signaling networks for controlling growth and development in response to the changing environment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, Brandon -- Zhou, Li -- Rolland, Filip -- Hall, Qi -- Cheng, Wan-Hsing -- Liu, Yan-Xia -- Hwang, Ildoo -- Jones, Tamara -- Sheen, Jen -- New York, N.Y. -- Science. 2003 Apr 11;300(5617):332-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12690200" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids, Cyclic/pharmacology ; Arabidopsis/*enzymology/genetics/growth & development/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Catalysis ; Cell Division ; Cytokinins/metabolism/pharmacology ; Ethylenes/metabolism ; Flowers/growth & development ; Gene Expression ; Genes, Plant ; Glucose/*metabolism ; Hexokinase/genetics/*metabolism ; Indoleacetic Acids/metabolism/pharmacology ; *Light ; Mutagenesis ; Phosphorylation ; Plant Leaves/growth & development/metabolism ; Plant Roots/growth & development ; Plants, Genetically Modified ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2003-04-19
    Description: The elongation phase of transcription by RNA polymerase II (RNAPII) is highly regulated and tightly linked to pre-messenger RNA (pre-mRNA) processing. Recent studies have implicated an early elongation checkpoint that facilitates the link to pre-mRNA processing. Here we show that the yeast forkhead transcription factors, Fkh1p and Fkh2p, associate with the coding regions of active genes and influence, in opposing ways, transcriptional elongation and termination. These events are coordinated with serine-5 and -2 phosphorylation of the heptad repeat of the carboxy-terminal domain (CTD) of RNAPII. Our results suggest that, in addition to their documented promoter function, Fkh1p and Fkh2p coordinate early transcription elongation and pre-mRNA processing. This may reflect a general feature of gene regulation in eukaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morillon, Antonin -- O'Sullivan, Justin -- Azad, Abul -- Proudfoot, Nicholas -- Mellor, Jane -- New York, N.Y. -- Science. 2003 Apr 18;300(5618):492-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12702877" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/*metabolism ; Cyclin B/genetics/metabolism ; Forkhead Transcription Factors ; Gene Expression Regulation, Fungal ; *Genes, Fungal ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Promoter Regions, Genetic ; RNA Polymerase II/*metabolism ; RNA Precursors/metabolism ; RNA, Fungal/metabolism ; RNA, Messenger/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Saccharomyces cerevisiae/enzymology/genetics/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Transcription Factors/*metabolism ; *Transcription, Genetic/drug effects ; Uracil/*analogs & derivatives/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2003-04-12
    Description: Vascular smooth muscle cell (SMC) proliferation and migration are important events in the development of atherosclerosis. The low-density lipoprotein receptor-related protein (LRP1) mediates suppression of SMC migration induced by platelet-derived growth factor (PDGF). Here we show that LRP1 forms a complex with the PDGF receptor (PDGFR). Inactivation of LRP1 in vascular SMCs of mice causes PDGFR overexpression and abnormal activation of PDGFR signaling, resulting in disruption of the elastic layer, SMC proliferation, aneurysm formation, and marked susceptibility to cholesterol-induced atherosclerosis. The development of these abnormalities was reduced by treatment with Gleevec, an inhibitor of PDGF signaling. Thus, LRP1 has a pivotal role in protecting vascular wall integrity and preventing atherosclerosis by controlling PDGFR activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boucher, Philippe -- Gotthardt, Michael -- Li, Wei-Ping -- Anderson, Richard G W -- Herz, Joachim -- GM 52016/GM/NIGMS NIH HHS/ -- HL20948/HL/NHLBI NIH HHS/ -- HL63762/HL/NHLBI NIH HHS/ -- NS43408/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 11;300(5617):329-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12690199" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aorta/cytology/metabolism/*pathology ; Arteriosclerosis/*pathology/physiopathology/*prevention & control ; Benzamides ; Cattle ; Cell Division ; Cell Line ; Cholesterol, Dietary/administration & dosage ; Diet, Atherogenic ; Elastin/analysis ; Enzyme Inhibitors/pharmacology ; Imatinib Mesylate ; Ligands ; Low Density Lipoprotein Receptor-Related ; Protein-1/genetics/metabolism/*physiology ; Mesenteric Arteries/cytology/pathology ; Mice ; Mice, Knockout ; Mice, Transgenic ; Muscle, Smooth, Vascular/cytology/*metabolism/pathology ; Myocytes, Smooth Muscle/*metabolism/physiology ; Phosphorylation ; Piperazines/pharmacology ; Platelet-Derived Growth Factor/metabolism/pharmacology ; Proto-Oncogene Proteins c-sis ; Pyrimidines/pharmacology ; Receptor, Platelet-Derived Growth Factor beta/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2003-05-31
    Description: Helicobacter pylori translocates the protein CagA into gastric epithelial cells and has been linked to peptic ulcer disease and gastric carcinoma. We show that injected CagA associates with the epithelial tight-junction scaffolding protein ZO-1 and the transmembrane protein junctional adhesion molecule, causing an ectopic assembly of tight-junction components at sites of bacterial attachment, and altering the composition and function of the apical-junctional complex. Long-term CagA delivery to polarized epithelia caused a disruption of the epithelial barrier function and dysplastic alterations in epithelial cell morphology. CagA appears to target H. pylori to host cell intercellular junctions and to disrupt junction-mediated functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369828/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369828/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amieva, Manuel R -- Vogelmann, Roger -- Covacci, Antonello -- Tompkins, Lucy S -- Nelson, W James -- Falkow, Stanley -- AI38459/AI/NIAID NIH HHS/ -- CA92229/CA/NCI NIH HHS/ -- DDC DK56339/DC/NIDCD NIH HHS/ -- R01 GM035527/GM/NIGMS NIH HHS/ -- R01GM35227/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 May 30;300(5624):1430-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA. amieva@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12775840" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Bacterial/genetics/*metabolism ; Bacterial Adhesion ; Bacterial Proteins/genetics/*metabolism ; Cell Adhesion Molecules/metabolism ; Cell Line ; Cell Polarity ; Cell Size ; Dogs ; Epithelial Cells/cytology/metabolism/*microbiology/ultrastructure ; Gastric Mucosa ; Helicobacter pylori/*pathogenicity/physiology ; Humans ; Intracellular Signaling Peptides and Proteins ; Junctional Adhesion Molecules ; Membrane Proteins/metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; Protein Tyrosine Phosphatases/metabolism ; Tight Junctions/*microbiology/physiology/*ultrastructure ; Tumor Cells, Cultured ; Zonula Occludens-1 Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-05-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schlessinger, Joseph -- New York, N.Y. -- Science. 2003 May 2;300(5620):750-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA. joseph.schlessinger@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730587" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Binding Sites ; Catalytic Domain ; Dimerization ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Feedback, Physiological ; Heparin/metabolism ; Humans ; Hydrogen Bonding ; Ligands ; Neoplasms/metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein Tyrosine Phosphatases/antagonists & inhibitors/metabolism ; Receptor Protein-Tyrosine Kinases/antagonists & inhibitors/*chemistry/*metabolism ; Receptor, EphB2/antagonists & inhibitors/chemistry/metabolism ; Receptor, Epidermal Growth Factor/antagonists & inhibitors/chemistry/metabolism ; Receptors, Fibroblast Growth Factor/antagonists & inhibitors/chemistry/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2003-03-01
    Description: Molecular etiologies of heart failure, an emerging cardiovascular epidemic affecting 4.7 million Americans and costing 17.8 billion health-care dollars annually, remain poorly understood. Here we report that an inherited human dilated cardiomyopathy with refractory congestive heart failure is caused by a dominant Arg --〉 Cys missense mutation at residue 9 (R9C) in phospholamban (PLN), a transmembrane phosphoprotein that inhibits the cardiac sarcoplasmic reticular Ca2+-adenosine triphosphatase (SERCA2a) pump. Transgenic PLN(R9C) mice recapitulated human heart failure with premature death. Cellular and biochemical studies revealed that, unlike wild-type PLN, PLN(R9C) did not directly inhibit SERCA2a. Rather, PLN(R9C) trapped protein kinase A (PKA), which blocked PKA-mediated phosphorylation of wild-type PLN and in turn delayed decay of calcium transients in myocytes. These results indicate that myocellular calcium dysregulation can initiate human heart failure-a finding that may lead to therapeutic opportunities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmitt, Joachim P -- Kamisago, Mitsuhiro -- Asahi, Michio -- Li, Guo Hua -- Ahmad, Ferhaan -- Mende, Ulrike -- Kranias, Evangelia G -- MacLennan, David H -- Seidman, J G -- Seidman, Christine E -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1410-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School and Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610310" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Calcium/metabolism ; Calcium Signaling ; Calcium-Binding Proteins/chemistry/*genetics/*physiology ; Calcium-Transporting ATPases/antagonists & inhibitors/metabolism ; Cardiomegaly ; Cardiomyopathy, Dilated/*genetics/pathology/physiopathology ; Cell Line ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Female ; Heart Failure/*genetics/pathology/physiopathology ; Heart Ventricles/metabolism/pathology ; Humans ; Lod Score ; Male ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Muscle Cells/metabolism/physiology ; *Mutation, Missense ; Myocardial Contraction ; Myocardium/pathology ; Pedigree ; Phosphorylation ; Sarcoplasmic Reticulum Calcium-Transporting ATPases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knowles, Jeremy -- New York, N.Y. -- Science. 2003 Mar 28;299(5615):2002-3. Epub 2003 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. jeremy_knowles@harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12637674" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; *Catalysis ; Chemistry, Physical ; Crystallization ; Crystallography, X-Ray ; Glucose-6-Phosphate/*analogs & derivatives/chemistry/metabolism ; Glucosephosphates/chemistry/metabolism ; Hydrogen Bonding ; Phosphoglucomutase/*chemistry/*metabolism ; Phosphoranes/chemistry ; Phosphorus/*chemistry ; Phosphorylation ; Physicochemical Phenomena ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2003-06-14
    Description: Cerebellar long-term depression (LTD) is a model of synaptic memory that requires protein kinase C (PKC) activation and is expressed as a reduction in the number of postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. LTD was absent in cultured cerebellar Purkinje cells from mutant mice lacking the AMPA receptor GluR2 subunit and could be rescued by transient transfection with the wild-type GluR2 subunit. Transfection with a point mutant that eliminated PKC phosphorylation of Ser880 in the carboxy-terminal PDZ ligand of GluR2 failed to restore LTD. In contrast, transfection with a point mutant that mimicked phosphorylation at Ser880 occluded subsequent LTD. Thus, PKC phosphorylation of GluR2 Ser880 is a critical event in the induction of cerebellar LTD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Hee Jung -- Steinberg, Jordan P -- Huganir, Richard L -- Linden, David J -- MH01590/MH/NIMH NIH HHS/ -- MH51106/MH/NIMH NIH HHS/ -- NS36715/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jun 13;300(5626):1751-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12805550" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Carrier Proteins/metabolism ; Cells, Cultured ; Cerebellar Cortex/cytology/*physiology ; Enzyme Activation ; Excitatory Postsynaptic Potentials ; *Long-Term Synaptic Depression ; Mice ; Mice, Knockout ; Nerve Tissue Proteins/metabolism ; Nuclear Proteins/metabolism ; Nuclear Receptor Coactivator 2 ; Patch-Clamp Techniques ; Phorbol Esters/pharmacology ; Phosphorylation ; Phosphoserine/metabolism ; Point Mutation ; Protein Binding ; Protein Kinase C/metabolism ; Purkinje Cells/*physiology ; Receptors, AMPA/genetics/*metabolism ; Transcription Factors/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2003-10-18
    Description: Unfolded proteins in the endoplasmic reticulum cause trans-autophosphorylation of the bifunctional transmembrane kinase Ire1, which induces its endoribonuclease activity. The endoribonuclease initiates nonconventional splicing of HAC1 messenger RNA to trigger the unfolded-protein response (UPR). We explored the role of Ire1's kinase domain by sensitizing it through site-directed mutagenesis to the ATP-competitive inhibitor 1NM-PP1. Paradoxically, rather than being inhibited by 1NM-PP1, drug-sensitized Ire1 mutants required 1NM-PP1 as a cofactor for activation. In the presence of 1NM-PP1, drug-sensitized Ire1 bypassed mutations that inactivate its kinase activity and induced a full UPR. Thus, rather than through phosphorylation per se, a conformational change in the kinase domain triggered by occupancy of the active site with a ligand leads to activation of all known downstream functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Papa, Feroz R -- Zhang, Chao -- Shokat, Kevan -- Walter, Peter -- AI44009/AI/NIAID NIH HHS/ -- GM32384/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1533-7. Epub 2003 Oct 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Francisco, CA 94143-2200, USA. frpapa@medicine.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14564015" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/pharmacology ; Adenosine Triphosphate/analogs & derivatives/chemistry/*metabolism/pharmacology ; Basic-Leucine Zipper Transcription Factors ; Binding Sites ; Binding, Competitive ; Cytosol/metabolism ; Dithiothreitol/pharmacology ; Endoplasmic Reticulum/*metabolism ; Endoribonucleases/metabolism ; Enzyme Activation ; Ligands ; Membrane Glycoproteins/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Models, Biological ; Mutagenesis, Site-Directed ; Phosphorylation ; Protein Conformation ; *Protein Folding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/antagonists & ; inhibitors/*chemistry/genetics/*metabolism ; Pyrazoles/chemistry/*metabolism/*pharmacology ; Pyrimidines/chemistry/*metabolism/*pharmacology ; RNA Splicing ; RNA, Messenger/genetics/metabolism ; Repressor Proteins/genetics/metabolism ; Saccharomyces cerevisiae Proteins/antagonists & ; inhibitors/*chemistry/genetics/*metabolism ; Signal Transduction ; Structure-Activity Relationship ; Substrate Specificity ; Transcription Factors/genetics/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2003-01-04
    Description: How scaffold proteins control information flow in signaling pathways is poorly understood: Do they simply tether components, or do they precisely orient and activate them? We found that the yeast mitogen-activated protein (MAP) kinase scaffold Ste5 is tolerant to major stereochemical perturbations; heterologous protein interactions could functionally replace native kinase recruitment interactions, indicating that simple tethering is largely sufficient for scaffold-mediated signaling. Moreover, by engineering a scaffold that tethers a unique kinase set, we could create a synthetic MAP kinase pathway with non-natural input-output properties. These findings demonstrate that scaffolds are highly flexible organizing factors that can facilitate pathway evolution and engineering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Sang-Hyun -- Zarrinpar, Ali -- Lim, Wendell A -- New York, N.Y. -- Science. 2003 Feb 14;299(5609):1061-4. Epub 2003 Jan 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology and Department of Biochemistry and Biophysics, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12511654" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Binding Sites ; Carrier Proteins/chemistry/genetics/*metabolism ; Evolution, Molecular ; MAP Kinase Kinase Kinases/genetics/*metabolism ; *MAP Kinase Signaling System ; Membrane Proteins/metabolism ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Mitogen-Activated Protein Kinases/metabolism ; Mutation ; Osmolar Concentration ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Kinases/genetics/*metabolism ; Protein Precursors/metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/enzymology/*metabolism/physiology ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2003-04-19
    Description: Persistent infections with hepatitis C virus (HCV) are likely to depend on viral inhibition of host defenses. We show that the HCV NS3/4A serine protease blocks the phosphorylation and effector action of interferon regulatory factor-3 (IRF-3), a key cellular antiviral signaling molecule. Disruption of NS3/4A protease function by mutation or a ketoamide peptidomimetic inhibitor relieved this blockade and restored IRF-3 phosphorylation after cellular challenge with an unrelated virus. Furthermore, dominant-negative or constitutively active IRF-3 mutants, respectively, enhanced or suppressed HCV RNA replication in hepatoma cells. Thus, the NS3/4A protease represents a dual therapeutic target, the inhibition of which may both block viral replication and restore IRF-3 control of HCV infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Foy, Eileen -- Li, Kui -- Wang, Chunfu -- Sumpter, Rhea Jr -- Ikeda, Masanori -- Lemon, Stanley M -- Gale, Michael Jr -- U01-AI48235/AI/NIAID NIH HHS/ -- U19-AI40035/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 May 16;300(5622):1145-8. Epub 2003 Apr 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12702807" target="_blank"〉PubMed〈/a〉
    Keywords: DNA-Binding Proteins/*antagonists & inhibitors/metabolism ; Gene Expression Regulation ; Gene Expression Regulation, Viral ; Hepacivirus/enzymology/immunology/*physiology ; Hepatitis C/therapy/virology ; Humans ; Interferon Regulatory Factor-3 ; Interferons/biosynthesis/genetics ; Mutation ; Phosphorylation ; Protease Inhibitors/pharmacology ; RNA, Viral/metabolism ; RNA-Binding Proteins/genetics/metabolism ; Serine Endopeptidases/*metabolism ; Transcription Factors/*antagonists & inhibitors/metabolism ; Tumor Cells, Cultured ; Viral Nonstructural Proteins/antagonists & inhibitors/*metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2003-08-23
    Description: Cell division in many mammalian tissues is associated with specific times of day, but just how the circadian clock controls this timing has not been clear. Here, we show in the regenerating liver (of mice) that the circadian clock controls the expression of cell cycle-related genes that in turn modulate the expression of active Cyclin B1-Cdc2 kinase, a key regulator of mitosis. Among these genes, expression of wee1 was directly regulated by the molecular components of the circadian clockwork. In contrast, the circadian clockwork oscillated independently of the cell cycle in single cells. Thus, the intracellular circadian clockwork can control the cell-division cycle directly and unidirectionally in proliferating cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsuo, Takuya -- Yamaguchi, Shun -- Mitsui, Shigeru -- Emi, Aki -- Shimoda, Fukuko -- Okamura, Hitoshi -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):255-9. Epub 2003 Aug 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Brain Science, Department of Brain Sciences, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12934012" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; *Biological Clocks ; CDC2 Protein Kinase/genetics/*metabolism ; CLOCK Proteins ; Cell Cycle ; Cell Cycle Proteins/genetics/metabolism ; *Cell Division ; *Circadian Rhythm ; Cryptochromes ; Cyclin B/genetics/*metabolism ; Cyclin B1 ; *Drosophila Proteins ; *Eye Proteins ; Flavoproteins/genetics/metabolism ; Gene Expression Profiling ; Gene Expression Regulation ; Hepatectomy ; Hepatocytes/*cytology/metabolism ; Kinetics ; Liver Regeneration ; Mice ; Mice, Inbred C57BL ; Mitosis ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; Phosphorylation ; *Photoreceptor Cells, Invertebrate ; Protein-Tyrosine Kinases/genetics/*metabolism ; Receptors, G-Protein-Coupled ; Trans-Activators/genetics/metabolism ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2003-08-30
    Description: Plant disease-resistance (R) proteins are thought to function as receptors for ligands produced directly or indirectly by pathogen avirulence (Avr) proteins. The biochemical functions of most Avr proteins are unknown, and the mechanisms by which they activate R proteins have not been determined. In Arabidopsis, resistance to Pseudomonas syringae strains expressing AvrPphB requires RPS5, a member of the class of R proteins that have a predicted nucleotide-binding site and leucine-rich repeats, and PBS1, a protein kinase. AvrPphB was found to proteolytically cleave PBS1, and this cleavage was required for RPS5-mediated resistance, which indicates that AvrPphB is detected indirectly via its enzymatic activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shao, Feng -- Golstein, Catherine -- Ade, Jules -- Stoutemyer, Mark -- Dixon, Jack E -- Innes, Roger W -- DK18849/DK/NIDDK NIH HHS/ -- GM46451/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 29;301(5637):1230-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Medical School and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947197" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*metabolism/microbiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Bacterial Proteins/chemistry/genetics/*metabolism ; Carrier Proteins/genetics/metabolism ; Cell Line ; Cysteine Endopeptidases/chemistry/genetics/*metabolism ; Genes, Bacterial ; Genes, Plant ; Genetic Complementation Test ; Humans ; Models, Biological ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Plant Diseases/*microbiology ; Plant Extracts/metabolism ; Plant Proteins/genetics/metabolism ; Plants, Genetically Modified ; Precipitin Tests ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Pseudomonas/*metabolism ; Recombinant Proteins/metabolism ; Tobacco/genetics/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2003-09-27
    Description: The immunological synapse is a specialized cell-cell junction between T cell and antigen-presenting cell surfaces. It is characterized by a central cluster of antigen receptors, a ring of integrin family adhesion molecules, and temporal stability over hours. The role of this specific organization in signaling for T cell activation has been controversial. We use in vitro and in silico experiments to determine that the immunological synapse acts as a type of adaptive controller that both boosts T cell receptor triggering and attenuates strong signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Kyeong-Hee -- Dinner, Aaron R -- Tu, Chun -- Campi, Gabriele -- Raychaudhuri, Subhadip -- Varma, Rajat -- Sims, Tasha N -- Burack, W Richard -- Wu, Hui -- Wang, Julia -- Kanagawa, Osami -- Markiewicz, Mary -- Allen, Paul M -- Dustin, Michael L -- Chakraborty, Arup K -- Shaw, Andrey S -- New York, N.Y. -- Science. 2003 Nov 14;302(5648):1218-22. Epub 2003 Sep 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, Box 8118, 660 South Euclid, Saint Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512504" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Antigen-Presenting Cells/immunology ; Antigens/immunology ; Cell Membrane/immunology/metabolism ; Computer Simulation ; Cytoskeletal Proteins ; Down-Regulation ; Endocytosis ; Ligands ; Lipid Bilayers ; *Lymphocyte Activation ; Major Histocompatibility Complex ; Mice ; Mice, Transgenic ; Microscopy, Confocal ; Models, Immunological ; Monte Carlo Method ; Peptides/immunology/metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Proteins/metabolism ; Receptor Aggregation ; Receptors, Antigen, T-Cell/immunology/*metabolism ; *Signal Transduction ; T-Lymphocytes/*immunology/metabolism ; ZAP-70 Protein-Tyrosine Kinase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sillje, Herman H W -- Nigg, Erich A -- New York, N.Y. -- Science. 2003 Feb 21;299(5610):1190-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany. sillje@biochem.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12595680" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; CDC2 Protein Kinase/metabolism ; Catalytic Domain ; Cell Cycle Proteins ; Centrosome/metabolism ; Humans ; Mitosis ; Peptide Library ; Phosphoproteins/*metabolism ; Phosphorylation ; Phosphotransferases/metabolism ; Protein Conformation ; Protein Kinases/*chemistry/*metabolism ; *Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases ; Proteomics ; Proto-Oncogene Proteins ; Signal Transduction ; cdc25 Phosphatases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ptashne, Mark -- Gann, Alexander -- New York, N.Y. -- Science. 2003 Feb 14;299(5609):1025-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA. m-ptashne@ski.mskcc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12586931" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Binding Sites ; Carrier Proteins/*metabolism ; Cell Membrane/enzymology/metabolism ; Evolution, Molecular ; *GTP-Binding Protein beta Subunits ; Heterotrimeric GTP-Binding Proteins/metabolism ; Intracellular Signaling Peptides and Proteins ; MAP Kinase Kinase Kinases/*metabolism ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Mitogen-Activated Protein Kinases/metabolism ; Mutation ; Osmolar Concentration ; Phosphorylation ; Protein Binding ; Protein Kinases/*metabolism ; Protein Precursors/metabolism ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Saccharomyces cerevisiae/enzymology/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-11-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malissen, Bernard -- New York, N.Y. -- Science. 2003 Nov 14;302(5648):1162-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie de Marseille-Luminy, INSERM-CNRS, Marseille Cedex 9, France. bernardm@ciml.univ-mrs.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14615524" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Antigen-Presenting Cells/immunology ; Antigens, CD2/metabolism ; Cell Membrane/immunology/*metabolism ; Computer Simulation ; Cytoskeletal Proteins ; Endocytosis ; Ligands ; Lipid Bilayers ; Lymphocyte Activation ; Major Histocompatibility Complex ; Mice ; Models, Immunological ; Peptides/immunology/metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Proteins/chemistry/*metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-cbl ; Receptor Aggregation ; Receptor-CD3 Complex, Antigen, T-Cell/immunology/metabolism ; Receptors, Antigen, T-Cell/immunology/*metabolism ; *Signal Transduction ; T-Lymphocytes/*immunology/metabolism ; *Ubiquitin-Protein Ligases ; ZAP-70 Protein-Tyrosine Kinase ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2003-03-15
    Description: Enzymes provide enormous rate enhancements, unmatched by any other type of catalyst. The stabilization of high-energy states along the reaction coordinate is the crux of the catalytic power of enzymes. We report the atomic-resolution structure of a high-energy reaction intermediate stabilized in the active site of an enzyme. Crystallization of phosphorylated beta-phosphoglucomutase in the presence of the Mg(II) cofactor and either of the substrates glucose 1-phosphate or glucose 6-phosphate produced crystals of the enzyme-Mg(II)-glucose 1,6-(bis)phosphate complex, which diffracted x-rays to 1.2 and 1.4 angstroms, respectively. The structure reveals a stabilized pentacovalent phosphorane formed in the phosphoryl transfer from the C(1)O of glucose 1,6-(bis)phosphate to the nucleophilic Asp8 carboxylate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lahiri, Sushmita D -- Zhang, Guofeng -- Dunaway-Mariano, Debra -- Allen, Karen N -- GM16099/GM/NIGMS NIH HHS/ -- RR07707/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2003 Mar 28;299(5615):2067-71. Epub 2003 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118-2394, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12637673" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Chemistry, Physical ; Crystallization ; Crystallography, X-Ray ; Glucose-6-Phosphate/metabolism ; Glucosephosphates/chemistry/metabolism ; Lactococcus lactis/enzymology ; Ligands ; Magnesium/chemistry ; Phosphates/chemistry ; Phosphoglucomutase/*chemistry/*metabolism ; Phosphoranes/chemistry ; Phosphorus/*chemistry ; Phosphorylation ; Physicochemical Phenomena ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2003-04-19
    Description: Rapid induction of type I interferon expression, a central event in establishing the innate antiviral response, requires cooperative activation of numerous transcription factors. Although signaling pathways that activate the transcription factors nuclear factor kappaB and ATF-2/c-Jun have been well characterized, activation of the interferon regulatory factors IRF-3 and IRF-7 has remained a critical missing link in understanding interferon signaling. We report here that the IkappaB kinase (IKK)-related kinases IKKepsilon and TANK-binding kinase 1 are components of the virus-activated kinase that phosphorylate IRF-3 and IRF-7. These studies illustrate an essential role for an IKK-related kinase pathway in triggering the host antiviral response to viral infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sharma, Sonia -- tenOever, Benjamin R -- Grandvaux, Nathalie -- Zhou, Guo-Ping -- Lin, Rongtuan -- Hiscott, John -- New York, N.Y. -- Science. 2003 May 16;300(5622):1148-51. Epub 2003 Apr 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lady Davis Institute for Medical Research-Jewish General Hospital, Departments of Microbiology and Immunology and Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12702806" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; DNA-Binding Proteins/metabolism ; Enzyme Activation ; Gene Expression Regulation, Viral ; Hepacivirus/immunology/*physiology ; Humans ; I-kappa B Kinase ; Interferon Regulatory Factor-3 ; Interferon Regulatory Factor-7 ; Interferon Type I/*biosynthesis/genetics ; Phosphorylation ; Promoter Regions, Genetic ; Protein-Serine-Threonine Kinases/*metabolism ; RNA, Small Interfering/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2003-03-29
    Description: Meiosis is a specialized cell division in which two chromosome segregation phases follow a single DNA replication phase. The budding yeast Polo-like kinase Cdc5 was found to be instrumental in establishing the meiosis I chromosome segregation program. Cdc5 was required to phosphorylate and remove meiotic cohesin from chromosomes. Furthermore, in the absence of CDC5 kinetochores were bioriented during meiosis I, and Mam1, a protein essential for coorientation, failed to associate with kinetochores. Thus, sister-kinetochore coorientation and chromosome segregation during meiosis I are coupled through their dependence on CDC5.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Brian H -- Amon, Angelika -- GM62207/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 18;300(5618):482-6. Epub 2003 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12663816" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Cdc20 Proteins ; Cell Cycle Proteins/metabolism ; Cell Nucleus/metabolism ; Centromere/physiology ; Chromatids/physiology ; *Chromosome Segregation ; Chromosomes, Fungal/*physiology ; Kinetochores/physiology ; *Meiosis ; Metaphase ; Nuclear Proteins/metabolism ; Phosphorylation ; Protein Kinases/genetics/*metabolism ; Protein-Serine-Threonine Kinases ; Saccharomyces cerevisiae/enzymology/genetics/*physiology ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Securin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-11-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, Guido -- Brose, Nils -- New York, N.Y. -- Science. 2003 Nov 21;302(5649):1341-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Neuroscience, Max Planck Institute for Experimental Medicine, D-37075 Gottingen, Germany. gmeyer@em.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14631024" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Cell Cycle ; Cells, Cultured ; Cysteine Endopeptidases/metabolism ; Dendrites/*physiology/ultrastructure ; Down-Regulation ; GTPase-Activating Proteins/chemistry/*metabolism ; Hippocampus/cytology/metabolism ; Multienzyme Complexes/metabolism ; Nerve Tissue Proteins/metabolism ; Neuronal Plasticity/*physiology ; Phosphorylation ; Proteasome Endopeptidase Complex ; Protein Kinases/*metabolism ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases ; Recombinant Proteins/metabolism ; Signal Transduction ; Synapses/*physiology ; Two-Hybrid System Techniques ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2003-11-25
    Description: Cells crawl by coupling protrusion of their leading edge with retraction of their cell body. Protrusion is generated by the polymerization and bundling of filaments, but the mechanism of retraction is less clear. We have reconstituted retraction in vitro by adding Yersinia tyrosine phosphatase to the major sperm protein-based motility apparatus assembled from Ascaris sperm extracts. Retraction in vitro parallels that observed in vivo and is generated primarily by disassembly and rearrangement of the cytoskeleton. Therefore, cytoskeletal dynamics alone, unassisted by conventional motors, are able to generate both of these central components of amoeboid locomotion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miao, Long -- Vanderlinde, Orion -- Stewart, Murray -- Roberts, Thomas M -- R37GM29994/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 21;302(5649):1405-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14631043" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/physiology ; Adenosine Triphosphate/metabolism/pharmacology ; Animals ; Ascaris suum/*cytology/physiology ; Biopolymers ; Cell Adhesion ; Cell Extracts ; Cell Movement/*physiology ; Cytoplasmic Vesicles/physiology ; Cytoskeleton/*physiology ; Helminth Proteins/chemistry/metabolism/*physiology ; Hydrogen-Ion Concentration ; Male ; Myosins/physiology ; Phosphorylation ; Protein Tyrosine Phosphatases/metabolism ; Pseudopodia/physiology ; Spermatozoa/physiology/ultrastructure ; Yersinia enterocolitica/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...