ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fluid Mechanics and Thermodynamics  (1,214)
  • 2000-2004  (1,184)
  • 1950-1954  (30)
Collection
Years
Year
  • 1
    Publication Date: 2013-08-31
    Description: During the period December 23,1997 and December August 31,2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Spalart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: The Hubble Space Telescope (HST) was launched April 24, 1990, and was deployed April 25 into low Earth orbit (LEO). It was soon discovered that the metal poles holding the solar arrays were expanding and contracting as the telescope orbited the Earth passing between the sunlight and the Earth s shadow. The expansion and contraction, although very small, was enough to cause the telescope to shake because of thermal-induced jitters, a detrimental effect when trying to take pictures millions of miles away. Therefore, the European Space Agency (ESA, the provider of the solar arrays) built new solar arrays (SA-11) that contained bi-stem thermal shields which insulated the solar array metal poles. These thermal shields were made of 2 mil thick aluminized-Teflon fluorinated ethylene propylene (FEP) rings fused together into a circular bellows shape. The new solar arrays were put on the HST during an extravehicular activity (EVA), also called an astronaut space walk, during the first servicing mission (SM1) in December 1993. An on-orbit photograph of the HST with the SA-11, and a close up of the bellows-like structure of the thermal shields is provided in Figure 1.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Interm Summary Reports
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-12
    Description: A computational heat transfer design methodology was developed to study the dual-engine linear aerospike plume-induced base-heating environment during one power-pack out, in ascent flight. It includes a three-dimensional, finite volume, viscous, chemically reacting, and pressure-based computational fluid dynamics formulation, a special base-bleed boundary condition, and a three-dimensional, finite volume, and spectral-line-based weighted-sum-of-gray-gases absorption computational radiation heat transfer formulation. A separate radiation model was used for diagnostic purposes. The computational methodology was systematically benchmarked. In this study, near-base radiative heat fluxes were computed, and they compared well with those measured during static linear aerospike engine tests. The base-heating environment of 18 trajectory points selected from three power-pack out scenarios was computed. The computed asymmetric base-heating physics were analyzed. The power-pack out condition has the most impact on convective base heating when it happens early in flight. The source of its impact comes from the asymmetric and reduced base bleed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Journal of Propulsion and Power (ISSN 0748-4658); Volume 20; No. 3; 385-393
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydro-focusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-05
    Description: The Sensors and Electronics Technology Branch of the NASA Glenn Research Center is developing thin-film-based sensors for surface measurement in propulsion system research. Thin-film sensors do not require special machining of the components on which they are mounted, and they are considerably thinner than wire- or foil-based sensors. One type of sensor being advanced is the thin-film thermocouple, specifically for applications in high-temperature combustion environments. Ceramics are being demonstrated as having the potential to meet the demands of thin-film thermocouples in advanced aerospace environments. The maximum-use temperature of noble metal thin-film thermocouples, 1500 C (2700 F), may not be adequate for components used in the increasingly harsh conditions of advanced aircraft and next-generation launch vehicles. Ceramic-based thermocouples are known for their high stability and robustness at temperatures exceeding 1500 C, but are typically in the form of bulky rods or probes. As part of ASTP, Glenn's Sensors and Electronics Technology Branch is leading an in-house effort to apply ceramics as thin-film thermocouples for extremely high-temperature applications as part of ASTP. Since the purity of the ceramics is crucial for the stability of the thermocouples, Glenn's Ceramics Branch and Case Western Reserve University are developing high-purity ceramic sputtering targets for fabricating high-temperature sensors. Glenn's Microsystems Fabrication Laboratory, supported by the Akima Corporation, is using these targets to fabricate thermocouple samples for testing. The first of the materials used were chromium silicide (CrSi) and tantalum carbide (TaC). These refractory materials are expected to survive temperatures in excess of 1500 C. Preliminary results indicate that the thermoelectric voltage output of a thin-film CrSi versus TaC thermocouple is 15 times that of the standard type R (platinum-rhodium versus platinum) thermocouple, producing 20 mV with a 200 C temperature gradient. The photograph on the left shows the CrSi-TaC thermocouple in a test fixture at Glenn, and the resulting output signal is shown on the right. The temperature differential across the sample, from the center of the sample inside the oven to the sample mount outside the oven, is measured using a type R thermocouple on the sample.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-05
    Description: The unsteady, incompressible Navier-Stokes equations are used for the direct numerical simulation (DNS) of spatially evolving disturbances in a three-dimensional (3-D) attachment-line boundary layer. Two-dimensional (2-D) disturbances are introduced either by forcing at the in ow or by harmonic-source generators at the wall; 3-D disturbances are introduced by harmonic-source generators at the wall. The DNS results are in good agreement with both 2-D non-parallel theory (for small-amplitude disturbances) and weakly nonlinear theory (for finite-amplitude disturbances), which validates the two theories. The 2-D DNS results indicate that nonlinear disturbance growth occurs near branch II of the neutral stability curve; however, steady suction can be used to stabilize this disturbance growth. For 3-D instabilities that are generated o the attachment line, spreading both toward and away from the attachment line causes energy transfer to the attachment-line and downstream instabilities; suction stabilizes these instabilities. Furthermore, 3-D instabilities are more stable than 2-D or quasi-2-D instabilities.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-05
    Description: A fast multigrid solver for the steady incompressible Euler equations is presented. Unlike time-marching schemes, this approach uses relaxation of the steady equations. Application of this method results in a discretization that correctly distinguishes between the advection and elliptic parts of the operator, allowing efficient smoothers to be constructed. Solvers for both unstructured triangular grids and structured quadrilateral grids have been written. Computations for channel flow and flow over a nonlifting airfoil have computed. Using Gauss-Seidel relaxation ordered in the flow direction, textbook multigrid convergence rates of nearly one order-of-magnitude residual reduction per multigrid cycle are achieved, independent of the grid spacing. This approach also may be applied to the compressible Euler equations and the incompressible Navier-Stokes equations.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-12
    Description: The structural analysis results for a graphite/epoxy quasi-isotropic circular plate subjected to a forced rotation at the boundary and pressure is presented. The analysis is to support a specialized material characterization test for composite cryogenic tanks. Finite element models were used to ensure panel integrity and determine the pressure necessary to achieve a predetermined equal biaxial strain value. The displacement results due to the forced rotation at the boundary led to a detailed study of the bending stiffness matrix [D]. The variation of the bending stiffness terms as a function of angular position is presented graphically, as well as, an illustrative technique of considering the laminate as an I-beam.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: Various artificial compressibility methods for calculating the three-dimensional incompressible Navier-Stokes equations are compared. Each method is described and numerical solutions to test problems are conducted. A comparison based on convergence behavior, accuracy, and robustness is given.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 710-737; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Recent workshops to define strategic research on critical issues in microgravity fluids and transport phenomena in support of mission orientated needs of NASA and many technical conferences over the years in support of fundamental research targeting NASA's long range missions goal have identified several phase change processes needed to design advanced space and planetary based systems for long duration operations Recommendation noted that phase change processes are profoundly affected by gravitational environment.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 255-268; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-06
    Description: We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid and liquid-solid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients kLa and kGa (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 695-709; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-06
    Description: One particular characteristic observed in unsteady shear layers is the phase shift relative to the main flow. In attached boundary layers this will have an effect both on the instantaneous skin friction and heat transfer. In separation bubbles the contribution to the drag is dominated by the pressure distribution. However, the most significant effect appears to be the phase shift on the transition process. Unsteady transition behaviour may determine the bursting of the bubble resulting in an un-recoverable full separation. An early analysis of the phase shift was performed by Stokes for the incompressible boundary layer of an oscillating wall and an oscillating main flow. An amplitude overshoot within the shear layer as well as a phase shift were observed that can be attributed to the relatively slow diffusion of viscous stresses compared to the fast change of pressure. Experiments in a low speed facility with the boundary layer of a flat plate were evaluated in respect to phase shift. A pressure distribution similar to that on the suction surface of a turbomachinery aerofoil was superimposed generating a typical transitional separation bubble. A periodically unsteady main flow in the suction type wind tunnel was introduced via a rotating flap downstream of the test section. The experiments covered a range of the three similarity parameters of momentum-loss-thickness Reynolds-number of 92 to 226 and Strouhal-number (reduced frequency) of 0.0001 to 0.0004 at the separation point, and an amplitude range up to 19 %. The free stream turbulence level was less than 1% .Upstream of the separation point the phase shift in the laminar boundary layer does not appear to be affected significantly bay either of the three parameters. The trend perpendicular to the wall is similar to the Stokes analysis. The problem scales well with the wave velocity introduced by Stokes, however, the lag of the main flow near the wall is less than indicated analytically. The separation point comes closest to the Stokes analysis but the phase is still 20 degrees lower at the wall.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Minnowbrook IV: 2003 Workshop on Transition and Unsteady Aspects of Turbomachinery Flows; 54-55; NASA/TM-2004-212913
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-06
    Description: Among the numerous causes for unsteadiness in turbo machinery flows are turbulence and flow environment, wakes from stationary and rotating vanes, boundary layer separation, boundary layer/shear layer instabilities, presence of shock waves and deliberate unsteadiness for flow control purposes. These unsteady phenomena may lead to flow-structure interactions such as flutter and forced vibration as well as system instabilities such as stall and surge. A major issue of unsteadiness relates to the fact that a fundamental understanding of unsteady flow physics is lacking and requires continued attention. Accurate simulations and sufficient high fidelity experimental data are not available. The Glenn Research Center plan for Engine Component Flow Physics Modeling is part of the NASA 21st Century Aircraft Program. The main components of the plan include Low Pressure Turbine National Combustor Code. The goals, technical output and benefits/impacts of each element are described in the presentation. The specific areas selected for discussion in this presentation are blade wake interactions, flow control, and combustor exit turbulence and modeling.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Minnowbrook IV: 2003 Workshop on Transition and Unsteady Aspects of Turbomachinery Flows; 3-27; NASA/TM-2004-212913
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-06
    Description: The Effects of elevated free-stream turbulence (FST) on the natural and periodically excited separation bubbles were studied experimentally, due to the relevance of this flow to low-pressure turbine blades at low Reynolds numbers. A bubble was formed at the leading edge of a flat plate and the FST level was altered by placing a grid across the flow at different locations upstream of the plate. The mixing across the separated shear-layer, forming the free boundary of the bubble, increased due to the elevated FST and due to nominally two-dimensional periodic excitation, both flattening and shortening the bubble. Periodic excitation at frequencies that were at least an order of magnitude lower than those associated with the initial shear-layer instability, were very effective at low FST, because the amplitudes of the excitation frequency and its harmonic were amplified over the bubble. High frequency excitation (F+ 3, based on the length of the baseline low FST bubble) had a major effect close to the separation location, while farther downstream the excited fluctuations rapidly decayed in the reattachment region. Low frequency excitation, that generated waves comparable to the length of the unperturbed bubble (F+ 1) were less effective and their magnitude decayed at a slower rate downstream of reattachment. An increase in the level of the FST reduced the net effect of the periodic excitation on the mixing enhancement and subsequent reattachment process, probably due to a destructive interference between the nominally 2D excitation and the random (in space and time) FST, reducing the spanwise coherence and therefore the effectiveness of the current control strategy. However, even at the reduced effectiveness of 2D periodic excitation at elevated FST, it accelerated the reattachment process and the recovery rate of the reattached boundary layer, enhancing the boundary layer resistance to repeat separation and reducing its momentum loss further downstream.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Minnowbrook IV: 2003 Workshop on Transition and Unsteady Aspects of Turbomachinery Flows; 392-406; NASA/TM-2004-212913/SUPPL
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-05
    Description: In this brief, we investigate the turbulent condensation of a population of droplets by means of a direct numerical simulation. To that end, a coupled Navier-Stokes/Lagrangian solver is used where each particle is tracked and its growth by water vapor condensation is monitored exactly. The main goals of the study are to find out whether turbulence broadens the droplet size distribution, as observed in in situ measurements. The second issue is to understand if and for how long a correlation between the droplet radius and the local supersaturation exists for the purpose of modeling sub-grid scale microphysics in cloud-resolving codes. This brief is organized as follows. In Section 2 the governing equations are presented, including the droplet condensation model. The implementation of the forcing procedure is described in Section 3. The simulation results are presented in Section 4 together with a sketch of a simple stochastic model for turbulent condensation. Conclusions and the main outcomes of the study are given in Section 5.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Annual Research Briefs, 2004: Center for Turbulence Research; 305-316
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-02
    Description: Three-dimensional computational techniques, in particular the uncoupled CFD-DSMC of the present study, are available to be applied to problems such as jet interactions with variable density regions ranging from a continuum jet to a rarefied free stream. When the value of the jet to free stream momentum flux ratio approximately greater than 2000 for a sharp leading edge flat plate forward separation vortices induced by the jet interaction are present near the surface. Also as the free stream number density n (infinity) decreases, the extent and magnitude of normalized pressure increases and moves upstream of the nozzle exit. Thus for the flat plate model the effect of decreasing n (infinity) is to change the sign of the moment caused by the jet interaction on the flat plate surface.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-02
    Description: InSPACE is a microgravity fluid physics experiment that was operated on the International Space Station (ISS) in the Microgravity Science Glovebox from late March 2003 through early July 2003. (InSPACE is an acronym for Investigating the Structure of Paramagnetic Aggregates From Colloidal Emulsions.) The purpose of the experiment is to obtain fundamental data of the complex properties of an exciting class of smart materials termed magnetorheological (MR) fluids. MR fluids are suspensions, or colloids, comprised of small (micrometer-sized) superparamagnetic particles in a nonmagnetic medium. Colloids are suspensions of very small particles suspended in a liquid. (Examples of other colloids are blood, milk, and paint.) These controllable fluids can quickly transition into a nearly solid state when exposed to a magnetic field and return to their original liquid state when the magnetic field is removed. Controlling the strength of the magnetic field can control the relative stiffness of these fluids. MR fluids can be used to improve or develop new seat suspensions, robotics, clutches, airplane landing gear, and vibration damping systems. The principal investigator for InSPACE is Professor Alice P. Gast of the Massachusetts Institute of Technology (MIT). The InSPACE hardware was developed at the NASA Glenn Research Center. The InSPACE samples were delivered to the ISS in November 2002, on the Space Shuttle Endeavour, on Space Station Utilization Flight UF-2/STS113. Operations began on March 31, 2003, with the processing of three different particle size samples at multiple test parameters. This investigation focused on determining the structural organization of MR colloidal aggregates when exposed to a pulsing magnetic field. On Earth, the aggregates take the shape of footballs with spiky tips. This characteristic shape may be influenced by the pull of gravity, which causes most particles initially suspended in the fluid to sediment, (i.e., settle and collect at the bottom of the cell). In the absence of sedimentation effects on the ISS, the behavior and shape of these MR aggregate structures are dominated exclusively by magnetic and surface tension forces. The microscopic detail of these structures was imaged under two orthogonal camera views. The video was downlinked to the InSPACE team at Glenn's Telescience Support Center and to MIT and also recorded onboard the ISS on videotapes that will be brought back to the ground by the space shuttles. The study examined the effect on the structure formation by varying the magnetic field strength and pulse frequency, and particle size. Fundamental data that characterized the structure formation were obtained. InSPACE completed its last planned test run on July 2, 2003. Operations occurred on 21 days over approximately a 3-month period. Forty-one test points were completed during 26 test runs. During the initial testing, the procedures followed by the crew were modified to maximize the observation of some unexpected and interesting aggregate behavior. As a result Dr. Gast has reported on the formation of aggregate shapes that are more extended and diverse than those observed on the ground. Sheets of magnetic material folded over in a labyrinth pattern and large columnar aggregates with complex interfaces with the surrounding fluid are examples of the interesting structures that have been observed on the ISS. In light of these early findings, the understanding of the fundamental properties of MR fluids on the basis of ground-based observations may need to be reconsidered.The experiments on the ISS have provided a vast amount of video data for analysis. While this analysis is ongoing, plans are being made for additional experimental runs. For this purpose, additional hardware and cells containing samples of different magnetic particles and sizes are being fabricated for a future launch to the ISS. The InSPACE hardware will remain on orbit until this testing is completed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-02
    Description: Leakage and wear are two fundamental problems in all traditional turbine seals that contribute to an engine's inefficiency. The solutions to seal leakage and wear conflict in the conventional design space. Reducing the clearance between the seal and rotating shaft reduces leakage but increases wear because of increased contact incidents. Increasing the clearance to reduce the contact between parts reduces wear but increases parasitic leakage. The goal of this effort is to develop a seal that restricts leakage flow using acoustic pressure while operating in a noncontacting manner, thereby increasing life. In 1996, Dr. Timothy Lucas announced his discovery of a method to produce shock-free high-amplitude pressure waves. For the first time, the formation of large acoustic pressures was possible using dissonant resonators. A pre-prototype acoustic seal developed at the NASA Glenn Research Center exploits this fundamental acoustic discovery: a specially shaped cavity oscillated at the contained fluid's resonant frequency produces high-amplitude acoustic pressure waves of a magnitude approaching those required of today's seals. While the original researchers are continuing their development of acoustic pumps, refrigeration compressors, and electronic thermal management systems using this technology, the goal of researchers at Glenn is to apply these acoustic principles to a revolutionary sealing device. When the acoustic resonator shape is optimized for the sealing device, the flow from a high-pressure cavity to a low-pressure cavity will be restricted by a series of high-amplitude standing pressure waves of higher pressure than the pressure to be sealed. Since the sealing resonator cavity will not touch the adjacent sealing structures, seal wear will be eliminated, improving system life. Under a cooperative agreement between Glenn and the Ohio Aerospace Institute (OAI), an acoustic-based pre-prototype seal was demonstrated for the first time. A pressurized cavity was attached to one end of the resonator while the other end remained open to ambient pressure. Measurements were taken at several values of applied pressure with the assembly stationary, oscillated at an off-resonance frequency, and then oscillated on-resonance. The three cases show that the flow through the conical resonator can be reduced by oscillating the resonator at the resonance frequency of the air contained within the cavity. The results are currently being compared with results obtained from a commercial computational fluid dynamics code. The objective is to improve the design through numerical simulation before fabricating a next-generation prototype sealing device. Future work is aimed at implementing acoustic seal design improvements to further reduce the leakage flow rate through the device and at reducing the device's overall size.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-06
    Description: A new technology for reducing turbulent skin friction, called the Microblowing Technique (MBT), is presented. Results from proof-of-concept experiments show that this technology could potentially reduce turbulent skin friction by more than 50% of the skin friction of a solid flat plate for subsonic and supersonic flow conditions. The primary purpose of this review paper is to provide readers with information on the turbulent skin friction reduction obtained from many experiments using the MBT. Although the MBT has a penalty for obtaining the microblowing air associated with it, some combinations of the MBT with suction boundary layer control methods are an attractive alternative for a real application. Several computational simulations to understand the flow physics of the MBT are also included. More experiments and computational fluid dynamics (CFD) computations are needed for the understanding of the unsteady flow nature of the MBT and the optimization of this new technology.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-06
    Description: Solve the time-dependent inviscid flow equations for this geometry subject to the specified inflow/outflow mean conditions and the fluctuating inflow velocity distortion. (1) Compute the unsteady solution until periodicity in pressure is achieved by showing that at least two successive periods are identical. Periodicity must be achieved on both the airfoil surface and the inflow/outflow boundaries. (2) Once periodicity is achieved, compute the pressure frequency spectra on the reference airfoil on both the upper and lower surfaces at x=(-0.25c,0.00, +0.25c), on the inflow boundary at (x,y)={1.5c,-0.3c), (-1.5c,0.0),(-1.5c,0.3c)} and on the outflow boundary at (x,y)= {(1.5c,-0.3c),(1.5c,0.0), (1.5c,0.3c)}. Express the spectral results in dB using the standard definition 20 log(P(sub(r.m.s)/P(sub ref), where p(sub ref) == 20 microPa. (3) Extract the harmonic pressure distributions on the inflow and outflow boundaries (i.e., on x= -/+ 1.5c lines) at the fundamental frequency omega and apply a Fourier transform in y direction to identify the spatial (i.e., mode order) structure of the pressure perturbations. Express the result in dB for each mode order. Repeat the process for the frequencies 2omega and 3omega.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems; 18-22; NASA/CP-2004-212954
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-06
    Description: Three benchmark problems from the current and previous CAA workshops involving tone noise generated in viscous flows are investigated using the CE/SE finite volume method. The CE/SE method is first briefly reviewed. Then, the benchmark problems, namely, flow past a single cylinder (CAA Workshop II problem), flow past twin cylinders (from the current CAA Workshop IV, Category 5, Problem 1) and flow past a deep cavity with overhang (CAA Workshop III problem) are investigated. Generally good results are obtained in comparison with the experimental data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems; 213-228; NASA/CP-2004-212954
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-06
    Description: The effects of gravity on the bubble formation in an annular jet were studied. The experiments were conducted in the 2.2-second drop tower at the NASA Glenn Research Center. Terrestrial gravity experiments were conducted at the Fluid Dynamics Research Laboratory at the University of Oklahoma. Stainless steel tubing with inner diameters of 1/8" (gas inner annulus) and 5/16" (liquid outer annulus) served as the injector. A rectangular test section, 6" x 6" x 14" tall, made out of half-inch thick Lexan was used. Images of the annular jet were acquired using a high-speed camera. The effects of gravity and varying liquid and gas flow rates on bubble size, wavelength, and breakup length were documented. In general, the bubble diameter was found to be larger in terrestrial gravity than in microgravity for varying Weber numbers (0.05 - 0.16 and 5 - 11) and liquid flow rates (1.5 ft/s - 3.0 ft/s). The wavelength was found to be larger in terrestrial gravity than in microgravity, but remained constant for varying Weber numbers. For low Weber numbers (0.05 - 0.16), the breakup length in microgravity was significantly higher than in terrestrial gravity. Comparison with linear stability analysis showed estimated bubble sizes within 9% of experimental bubble sizes. Bubble size compared to other terrestrial gravity experiments with same flow conditions showed distinct differences in bubble size, which displayed the importance of injector geometry on bubble formation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session, Volume 2; 206-215; NASA/CP-2004-213205/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-06
    Description: The objective of the present study is to develop a two-fluid model formulation with interfacial area transport equation applicable for microgravity conditions. The new model is expected to make a leapfrog improvement by furnishing the constitutive relations for the interfacial interaction terms with the interfacial area transport equation, which can dynamically model the changes of the interfacial structures. In the first year of this three-year project supported by the U.S. NASA, Office of Biological and Physics Research, the primary focus is to design and construct a ground-based, microgravity two-phase flow simulation facility, in which two immiscible fluids with close density will be used. In predicting the two-phase flow behaviors in any two-phase flow system, the interfacial transfer terms are among the most essential factors in the modeling. These interfacial transfer terms in a two-fluid model specify the rate of phase change, momentum exchange, and energy transfer at the interface between the two phases. For the two-phase flow under the microgravity condition, the stability of the fluid particle interface and the interfacial structures are quite different from those under normal gravity condition. The flow structure may not reach an equilibrium condition and the two fluids may be loosely coupled such that the inertia terms of each fluid should be considered separately by use of the two-fluid model. Previous studies indicated that, unless phase-interaction terms are accurately modeled in the two-fluid model, the complex modeling does not necessarily warrant an accurate solution.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session, Volume 2; 146-157; NASA/CP-2004-213205/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-06
    Description: Flow regime and pressure drop data was obtained and analyzed. Pulse flow exists at lower liquid flow rates in 0-g compared to 1-g. 1-g flow regime maps do not apply in microgravity. Pressure drop is higher in microgravity (enhanced interfacial effects).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 2-15; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-05
    Description: In fiscal year 2003, test cell 23 of the Research Combustion Laboratory (RCL 23) at the NASA Glenn Research Center was upgraded with the addition of gaseous hydrogen as a working propellant and the addition of a 450-psig air-supply system. Test flexibility was further enhanced by upgrades to the facility control systems. RCL 23 can now test with gaseous hydrogen flow rates up to 0.05 lbm/sec and jet fuel flow rates up to 0.62 lbm/sec. Research airflow rates up to 3 lbm/sec are possible with the 450-psig supply system over a range of inlet temperatures. Nonvitiated, heated air is supplied from a shell and tube heat exchanger. The maximum nonvitiated facility air temperature is 1100 F at 1.5 lbm/sec. Research-section exhaust temperatures are limited to 3200 F because of material and cooling capacity limits. A variety of support systems are available depending on the research hardware configuration. Test section ignition can be provided via either a hydrogen air torch system or an electronic spark system. Emissions measurements are obtained with either pneumatically or electromechanically actuated gas sample probes, and the electromechanical system allows for radial measurements at a user-specified axial location for measurement of emissions profiles. Gas analysis data can be obtained for a variety of species, including carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NO and NOx), oxygen (O2), unburnt hydrocarbons, and unburnt hydrogen. Facility control is accomplished with a programmable logic control system. Facility operations have been upgraded to a system based on graphical user interface control screens. A data system is available for real-time acquisition and monitoring of both measurements in engineering units and performance calculations. The upgrades have made RCL 23 a highly flexible facility for research into low emissions gas turbine combustor concepts, and the flame tube configuration inherently allows for a variety of fuel nozzle configurations to be tested in a cost-effective manner. RCL 23 is poised to be a leading facility for developing modern low-emission fuel nozzles for use with jet fuel and alternative fuels.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-05
    Description: The operation of a packed bed reactor (PBR) involves gas and liquid flowing simultaneously through a fixed-bed of solid particles. Depending on the application, the particles can be various shapes and sizes but are generally designed to force the two fluid phases through a tortuous route of narrow channels connecting the interstitial space. The PBR is the most common type of reactor in industry because it provides for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. Furthermore, this type of reactor is relatively compact and requires minimal power to operate. This makes it an excellent candidate for unit operations in support of long-duration human space activities.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-05
    Description: Recent research efforts within the Microgravity Fluid Physics Branch of the NASA Glenn Research Center have necessitated the development of a microscope capable of high-resolution, three-dimensional imaging of intracellular structure and tissue morphology. Standard optical microscopy works well for thin samples, but it does not allow the imaging of thick samples because of severe degradation caused by out-of-focus object structure. Confocal microscopy, which is a laser-based scanning microscopy, provides improved three-dimensional imaging and true optical sectioning by excluding the out-of-focus light. However, in confocal microscopy, out-of-focus object structure is still illuminated by the incoming beam, which can lead to substantial photo-bleaching. In addition, confocal microscopy is plagued by limited penetration depth, signal loss due to the presence of a confocal pinhole, and the possibility of live-cell damage. Two-photon microscopy is a novel form of laser-based scanning microscopy that allows three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon microscopy, it utilizes the nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption because of the nonlinear (i.e., quadratic) electric field dependence, so an ultrafast pulsed laser source must typically be employed. On the other hand, this stringent energy density requirement effectively localizes fluorophore excitation to the focal volume. Consequently, two-photon microscopy provides optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction in photo-damage because of the longer excitation wavelength, a reduction in background fluorescence, and a 4 increase in penetration depth over confocal methods because of the reduction in Rayleigh scattering.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-05
    Description: Many valuable advances in combustion science have come from observations of microgravity flames. This research is contributing to the improved efficiency and reduced emissions of practical combustors and is benefiting terrestrial and spacecraft fire safety. Unfortunately, difficulties associated with microgravity have prevented many types of measurements in microgravity flames. In particular, temperature measurements in flames are extremely important but have been limited in microgravity. A novel method of measuring temperatures in microgravity flames is being developed in-house at the National Center for Microgravity Research and the NASA Glenn Research Center and is described here. Called thin-filament pyrometry, it involves using a camera to determine the local gas temperature from the intensity of inserted fibers glowing in a flame. It is demonstrated here to provide accurate measurements of gas temperatures in a flame simultaneously at many locations. The experiment is shown. The flame is a laminar gas jet diffusion flame fueled by methane (CH4) flowing from a 14-mm round burner at a pressure of 1 atm. A coflowing stream of air is used to prevent flame flicker. Nine glowing fibers are visible. These fibers are made of silicon carbide (SiC) and have a diameter of 15 m (for comparison, the average human hair is 75 m in diameter). Because the fibers are so thin, they do little to disturb the flame and their temperature remains close to that of the local gas. The flame and glowing filaments were imaged with a digital black-and-white video camera. This camera has an imaging area of 1000 by 1000 pixels and a wide dynamic range of 12 bits. The resolution of the camera and optics was 0.1 mm. Optical filters were placed in front of the camera to limit incoming light to 750, 850, 950, and 1050 nm. Temperatures were measured in the same flame in the absence of fibers using 50-m Btype thermocouples. These thermocouples provide very accurate temperatures, but they generally are not useful in microgravity tests because they measure temperature at only one location at a time. Thermocouple measurements at a height of 11 mm above the burner were used to calibrate the thin-filament pyrometry system at all four wavelengths. This calibration was used to perform thin-filament pyrometry at other heights above the burner. One such profile is shown in this graph; this is for a height of 21 mm. The agreement between the pyrometry measurements and thermocouple results at this height is excellent in the range of 1000 to 2000 K, with an estimated uncertainty of 50 K and an estimated upper limit of 2500 K. Neither the thermocouple nor the thin-filament pyrometry temperatures have been corrected for radiation, but the correction is expected to be nearly the same for both methods. We anticipate that thin-filament pyrometry similar to that developed here will become an important diagnostic for studies of microgravity flames owing to its accuracy and its ability to simultaneously measure finely spaced temperatures.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-05
    Description: When discharged into an International Space Station (ISS) payload rack, a carbon dioxide (CO2) portable fire extinguisher (PFE) must extinguish a fire by decreasing the oxygen in the rack by 50 percent within 60 sec. The length of time needed for this oxygen reduction throughout the rack and the length of time that the CO2 concentration remains high enough to prevent the fire from reigniting is important when determining the effectiveness of the response and postfire procedures. Furthermore, in the absence of gravity, the local flow velocity can make the difference between a fire that spreads rapidly and one that self-extinguishes after ignition. A numerical simulation of the discharge of CO2 from PFE into the Combustion Integrated Rack (CIR) in microgravity was performed to obtain the local velocity and CO2 concentration. The complicated flow field around the PFE nozzle exits was modeled by sources of equivalent mass and momentum flux at a location downstream of the nozzle. The time for the concentration of CO2 to reach a level that would extinguish a fire anywhere in the rack was determined using the Fire Dynamics Simulator (FDS), a computational fluid dynamics code developed by the National Institute of Standards and Technology specifically to evaluate the development of a fire and smoke transport. The simulation shows that CO2, as well as any smoke and combustion gases produced by a fire, would be discharged into the ISS cabin through the resource utility panel at the bottom of the rack. These simulations will be validated by comparing the results with velocity and CO2 concentration measurements obtained during the fire suppression system verification tests conducted on the CIR in March 2003. Once these numerical simulations are validated, portions of the ISS labs and living areas will be modeled to determine the local flow conditions before, during, and after a fire event. These simulations can yield specific information about how long it takes for smoke and combustion gases produced by a fire to reach a detector location, how large the fire would be when the detector alarms, and the behavior of the fire until it has been extinguished. This new capability could then be used to optimize the location of fire detectors and fire-suppression ports as well as to evaluate the effectiveness of fire suppressants and response strategies. Numerical data collected from these simulations could also be used to develop a virtual reality fire event for crew training and fire safety awareness. This work is funded by NASA's Bioastronautics Initiative, which has the objective of ensuring and enhancing the health, safety, and performance of humans in space. As part of this initiative, the Microgravity Combustion Science Branch at the NASA Glenn Research Center is conducting spacecraft fire safety research to significantly improve fire safety on inhabited spacecraft.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-05
    Description: A fast-running unsteady aerodynamics code, LINFLUX, was previously developed for predicting turbomachinery flutter. This linearized code, based on a frequency domain method, models the effects of steady blade loading through a nonlinear steady flow field. The LINFLUX code, which is 6 to 7 times faster than the corresponding nonlinear time domain code, is suitable for use in the initial design phase. Earlier, this code was verified through application to a research fan, and it was shown that the predictions of work per cycle and flutter compared well with those from a nonlinear time-marching aeroelastic code, TURBO-AE. Now, the LINFLUX code has been applied to real configurations: fans developed under the Energy Efficient Engine (E-cubed) Program and the Quiet Aircraft Technology (QAT) project. The LINFLUX code starts with a steady nonlinear aerodynamic flow field and solves the unsteady linearized Euler equations to calculate the unsteady aerodynamic forces on the turbomachinery blades. First, a steady aerodynamic solution is computed for given operating conditions using the nonlinear unsteady aerodynamic code TURBO-AE. A blade vibration analysis is done to determine the frequencies and mode shapes of the vibrating blades, and an interface code is used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor is used to interpolate the mode shapes from the structural dynamics mesh onto the computational fluid dynamics mesh. Then, LINFLUX is used to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. Finally, a post-processor uses the unsteady pressures to calculate the generalized aerodynamic forces, eigenvalues, an esponse amplitudes. The eigenvalues determine the flutter frequency and damping. Results of flutter calculations from the LINFLUX code are presented for (1) the E-cubed fan developed under the E-cubed program and (2) the Quiet High Speed Fan (QHSF) developed under the Quiet Aircraft Technology project. The results are compared with those obtained from the TURBO-AE code. A graph of the work done per vibration cycle for the first vibration mode of the E-cubed fan is shown. It can be seen that the LINFLUX results show a very good comparison with TURBO-AE results over the entire range of interblade phase angle. The work done per vibration cycle for the first vibration mode of the QHSF fan is shown. Once again, the LINFLUX results compare very well with the results from the TURBOAE code.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-05
    Description: A new in-house test capability has been developed at the NASA Glenn Research Center, where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive testing to aid the development of analytical life prediction methodology and to experimentally aid in verification of the flight-design component's life. The new facility includes two test rigs that are performing creep testing of the SRG heater head pressure vessel test articles at design temperature and with wall stresses ranging from operating level to seven times that (see the following photograph).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-05
    Description: The TopMaker technique was developed in an effort to reduce the time required for grid generation in complex numerical studies. Topology generation accounts for much of the man-hours required for structured multiblock grids. With regard to structured multiblock grids, topology refers to how the blocks are arranged and connected. A two-dimensional multiblock topology generation technique has been developed at the NASA Glenn Research Center. Very general configurations can be addressed by the technique. A configuration is defined by a collection of non-intersecting closed curves, which will be referred to as loops. More than a single loop implies that holes exist in the domain, which poses no problem. This technique requires only the medial vertices and the touch points that define each vertex. From the information about the medial vertices, the connectivity between medial vertices is generated. The physical shape of the medial edge is not required. By applying a few simple rules to each medial edge, a multiblock topology can be generated without user intervention. The resulting topologies contain only the level of complexity dictated by the configurations. Grid lines remain attached to the boundary except at sharp concave turns, where a change in index family is introduced as would be desired. Keeping grid lines attached to the boundary is especially important in computational fluid dynamics, where highly clustered grids are used near no-slip boundaries. This technique is simple and robust and can easily be incorporated into the overall grid-generation process.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-06
    Description: Over the past thirty years, numerical methods and simulation tools for incompressible flows have been advanced as a subset of the computational fluid dynamics (CFD) discipline. Although incompressible flows are encountered in many areas of engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to the rather stringent requirements for predicting aerodynamic performance characteristics of flight vehicles, while flow devices involving low-speed or incompressible flow could be reasonably well designed without resorting to accurate numerical simulations. As flow devices are required to be more sophisticated and highly efficient CFD took become increasingly important in fluid engineering for incompressible and low-speed flow. This paper reviews some of the successes made possible by advances in computational technologies during the same period, and discusses some of the current challenges faced in computing incompressible flows.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-06
    Description: Transport of solid-liquid slurries in pipeline transport over short and medium distances is very important in many industries, including mining related processes. The particle image velocimetry technique was successfully utilized to investigate the velocities and kinetic energy fluctuations of slurry particles at the tongue region of an optically-clear centrifugal pump. The experiments were conducted using 500 micron glass beads at volumetric Concentrations of 2.5% and 5% and at pump speeds of 725 rpm and 1000 rpm. The fluctuation kinetic energy increased approximately 200% to 500% as the pump speed was increased from 725 rpm to IO00 rpm. The directional impingement mechanism is more significant at the pressure side of the blade, tongue and the casing. This mechanism becomes more important as the speed increases. This suggests that the impeller; tongue and the casing of the slurry pump can wear out quickly, especially with an increase in speed. In this paper the emphasis is on the tongue region. The random impingement mechanism caused by the fluctuation kinetic energy of the solids can play an important role on the erosion of the tongue area.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Journal of Energy Resources Technology (ISSN 0195-0738); Volume 126; 271-278
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-11
    Description: This Symposium is intended to bring together the often distinct cultures of the Stability and Control (S&C) community and the Computational Fluid Dynamics (CFD) community. The COMSAC program is itself a new effort by NASA Langley to accelerate the application of high end CFD methodologies to the demanding job of predicting stability and control characteristics of aircraft. This talk is intended to set the stage for needing a program like COMSAC. It is not intended to give details of the program itself. The topics include: 1) S&C Challenges; 2) Aero prediction methodology; 3) CFD applications; 4) NASA COMSAC planning; 5) Objectives of symposium; and 6) Closing remarks.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: COMSAC: Computational Methods for Stability and Control; 7-27; NASA/CP-2004-213028/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-11
    Description: The motivation behind the inclusion of unsteady aerodynamics and aeroelastic effects in the computation of stability and control (S&C) derivatives will be discussed as they pertain to aeroelastic and aeroservoelastic analysis. This topic will be addressed in the context of two applications, the first being the estimation of S&C derivatives for a cable-mounted aeroservoelastic wind tunnel model tested in the NASA Langley Research Center (LaRC) Transonic Dynamics Tunnel (TDT). The second application will be the prediction of the nonlinear aeroservoelastic phenomenon known as Residual Pitch Oscillation (RPO) on the B-2 Bomber. Techniques and strategies used in these applications to compute S&C derivatives and perform flight simulations will be reviewed, and computational results will be presented.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: COMSAC: Computational Methods for Stability and Control, Part 2; 489-510; NASA/CP-2004-213028/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-11
    Description: COMSAC goals include increasing the acceptance of CFD as a viable tool for S&C predictions, as well as to focus CFD development and improvement towards the needs of the S&C community. We view this as a symbiotic relationship, with increasing improvement of CFD promoting increasing acceptance by the S&C community, and increasing acceptance spurring further improvements. In this presentation we want to provide an overview for the non CFD expert of current CFD strengths and weaknesses, as well as to highlight a few emerging capabilities that we feel will lead toward increased usefulness in S&C applications.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: COMSAC: Computational Methods for Stability and Control; 48-68; NASA/CP-2004-213028/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-18
    Description: Experiments have shown that moderate turbulence levels can nearly double turbine blade stagnation region heat transfer. Data have also shown that heat transfer is strongly affected by the scale of turbulence as well as its level. In addition to the stagnation region, turbulence is often seen to increase pressure surface heat transfer. This is especially evident at low to moderate Reynolds numbers. Vane and rotor stagnation region, and vane pressure surface heat transfer augmentation is often seen in a pre-transition environment. Accurate predictions of transition and relaminarization are critical to accurately predicting blade surface heat transfer. An approach is described which incorporates the effects of both turbulence level and scale into a CFD analysis. The model is derived from experimental data for cylindrical and elliptical leadng edges. Results using this model are compared to experimental data for both vane and rotor geometries. The comparisons are made to illustrate that using a model which includes the effects of turbulence length scale improves agreement with data, and to illustrate where improvements in the modeling are needed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Minnowbrook IV: 2003 Workshop on Transition and Unsteady Aspects of Turbomachinery Flows; 36; NASA/TM-2004-212913
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-18
    Description: Computational Fluid Dynamics (CFD) is becoming an important component of injector design in the rocket industry. Injector designers who use CFD in the design process need to understand the accuracy level of the particular code being used for certain aspects of the design. This paper represents a recent effort to demonstrate the accuracy of two CFD codes to calculate the wall heat flux for a single element injector. The FDNS and Loci- CHEM codes currently in use at NASA Marshall Space Flight Center were evaluated. The test case was a single shear coaxial element with gaseous oxygen and hydrogen in a chamber instrumented with coaxial heat flux gauges on the chamber wall down the axis. The data were taken at Penn State University. Measured wall temperatures were used as boundary conditions for the CFD calculations. Calculations were compared to experimental data at chamber pressures of 300,450 600, and 750 psia. The accuracy level of both codes was assessed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 10, 2005 - Jul 13, 2005; Tucson, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-18
    Description: Solid-oxide fuel cells (SOFCs) show great potential as a power source for future space exploration missions. Because SOFCs operate at temperatures significantly higher than other types of fuel cells, they can reach overall efficiencies of up to 60% and are able to utilize fossil fuels. The SOFC team at GRC is leading NASA's effort to develop a solid oxide fuel cell with a power density high enough to be used for aeronautics and space applications, which is approximately ten times higher than ground transport targets. layers must be able to operate as a single unit at temperatures upwards of 900'C for at least 40,000 hours with less than ten percent degradation. One key challenge to meeting this goal arises from the thermal expansion mismatch between different layers. The amount a material expands upon heating is expressed by its coefficient of thermal expansion (CTE). If the CTEs of adjacent layers are substantially different, thermal stresses will arise during the cell's fabrication and operation. These stresses, accompanied by thermal cycling, can fracture and destroy the cell. While this is not an issue at the electrolyte-cathode interface, it is a major concern at the electrolyte-anode interface, especially in high power anode-supported systems. electrolyte are nearly identical. Conventionally, this has been accomplished by varying the composition of the anode to match the CTE of the yittria-stabilized zirconia (YSZ) electrolyte (approx.10.8x10(exp -6/degC). A Ni/YSZ composite is typically used as a base material for the anode due to its excellent electrochemical properties, but its CTE is about 13.4x10(exp -6/degC). One potential way to lower the CTE of this anode is to add a small percentage of polycrystalline Al2TiO5, with a CTE of 0.68x10(exp -6/degC, to the Ni/YSZ base. However, Al2TiO5 is thermally unstable and loses its effectiveness as it decomposes to Al2O3 and TiO2 between 750 C and 1280 C. be used as additives to increase the thermal stability of Al2TiO5 in SOFC operating conditions without adversely affecting the electrochemical properties of the SOFC anode. Three candidate materials were chosen through an extensive literature review: MgO, Fe2O3, and ZrTiO4. Although all three have been shown to prevent Al2TiO5 decomposition under various conditions, their effectiveness in the temperature range and atmosphere of the SOFC has not yet been evaluated. Several batches of Al2TiO5 with varying amounts of additives were prepared, exposed to reducing and oxidizing atmospheres at elevated temperatures, and the resulting decomposition of Al2TiO5 was measured. The most promising additives were further evaluated with the goal of ultimately preparing low CTE anodes that are chemically compatible to current systems. Adding minor constituents to stabilize Al2TiO5 could ultimately preserve its low CTE for the life of the fuel cell and improve the cell's long-term performance without a drop in anode conductivity. Further, these low CTE filler additions could allow the use of new sulfur tolerant anode materials, improving the viability of SOFCs for future aeronautics and space applications. Every SOFC consists of a cathode and an anode separated by an electrolyte, These three One way to avoid this problem is to design the cell such that the CTEs of the anode and The objective of this summer research project was to evaluate several materials that could
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-18
    Description: The density, viscosity, and electrical conductivity of Hg(sub 0.8)Cd(sub 0.2)Te melt were measures as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(sub 0.8)Cd(sub 0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(sub 0.8)Cd(sub 0.2)Te melt as the temperature was decreased to below 1090 K.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-18
    Description: The relaxation phenomenon of semiconductor melts, or the change of melt structure with time, impacts the crystal growth process and the eventual quality of the crystal. The thermophysical properties of the melt are good indicators of such changes in melt structure. Also, thermophysical properties are essential to the accurate predication of the crystal growth process by computational modeling. Currently, the temperature dependent thermophysical property data for the Hg-based II-VI semiconductor melts are scarce. This paper reports the results on the temperature dependence of melt density, viscosity and electrical conductivity of Hg-based II-VI compounds. The melt density was measured using a pycnometric method, and the viscosity and electrical conductivity were measured by a transient torque method. Results were compared with available published data and showed good agreement. The implication of the structural changes at different temperature ranges was also studied and discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-18
    Description: New short-range order data are presented for equilibrium and undercooled liquids of Ti and Ni. These were obtained from in-situ synchrotron x-ray diffraction measurements of electrostatically-levitated droplets. While the short-range order of liquid Ni is icosahedral, consistent with Frank's hypothesis, significantly distorted icosahedral order is observed in liquid Ti. This is the first experimental observation of distorted icosahedral short-range order in any liquid. although this has been predicted by theoretical studies on atomic clusters.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-18
    Description: The sedimentation dynamics of extremely low polydispersity, non-colloidal, particles are studied in a liquid fluidized bed at low Reynolds number, Re much less than 1. When fluidized, the system reaches a steady state, defined where the local average volume fraction does not vary in time. In steady state, the velocity fluctuations and the particle concentrations are found to strongly depend on height. Using our results, we test a recently developed stability model for steady state sedimentation. The model describes the data well, and shows that in steady state there is a balancing of particle fluxes due to the fluctuations and the concentration gradient. Some results are also presented for the dependence of the concentration gradient in fluidized beds on particle size; the gradients become smaller as the particles become larger and fewer in number.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: In the past we have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. From these images it was clear that a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. During these studies we used large volume crystals, which were clearly distinguished fiom the loop holding them. These large crystals, originally grown for neutron diffiaction studies, were chosen deliberately to enhance the imaging. As an extension to this work, we present used thermal imaging to study small crystals, held in a cryo-loop, in the presence of vitrified mother liquor. The different d a r e d transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop. Data fkom initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryocooled and imaged in large loops, both with visible light mad with h i k e d rdi&tion. The crystals were clearly distinguished from the vitrified solution in the infiared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Hauptmann Woodward Medical Research Institute Meeting; Apr 26, 2004; Buffalo, NY; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-18
    Description: Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in a variety of research and industrial applications for understanding materials processing, fluid physics, and strain/displacement measurements. The 3-D experiments in these fields most likely inhibit the use of conventional techniques, which are based only on planar and optically-transparent-field observation. Here, we briefly review the current status of 3-D diagnostics for motion/velocity detection, for both optical and x-ray systems. As an initial step for providing 3-D capabilities, we nave developed stereoscopic tracking velocimetry (STV) to measure 3-D flow/deformation through optical observation. The STV is advantageous in system simplicity, for continually observing 3- D phenomena in near real-time. In an effort to enhance the data processing through automation and to avoid the confusion in tracking numerous markers or particles, artificial neural networks are employed to incorporate human intelligence. Our initial optical investigations have proven the STV to be a very viable candidate for reliably measuring 3-D flow motions. With previous activities are focused on improving the processing efficiency, overall accuracy, and automation based on the optical system, the current efforts is directed to the concurrent expansion to the x-ray system for broader experimental applications.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: American Society of Mechanical Engineers International Mechanical Engineering Congress; Nov 13, 2004 - Nov 20, 2004; Anaheim, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-18
    Description: Upcoming major NASA missions such as the Einstein Inflation Probe and the Single Aperture Far-Infrared Observatory require arrays of detectors with thousands of elements, operating at temperatures near l00 mK and sensitive to wavelengths from approx. 100 microns to approx. 3 mm. Such detectors represent a substantial enabling technology for these missions, and must be demonstrated soon in order for them to proceed. In order to make rapid progress on detector development, the cryogenic testing cycle must be made convenient and quick. We have developed a cryogenic detector characterization system capable of testing superconducting detector arrays in formats up to 8 x 32, read out by SQUID multiplexers. The system relies on the cooling of a two-stage adiabatic demagnetization refrigerator immersed in a liquid helium bath. This approach permits a detector to be cooled from 300K to 50 mK in about 4 hours, so that a test cycle begun in the morning will be over by the end of the day. Tine system is modular, with two identical immersible units, so that while one unit is cooling, the second can be reconfigured for the next battery of tests. We describe the design, construction, and performance of this cryogenic detector testing facility.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Millimeter and Sumillimeter Detectors; Jun 21, 2004 - Jun 25, 2004; Glasgow, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-18
    Description: Experiments to suppress thermocapillary oscillations using high-frequency vibrations were carried out in sodium nitrate floating half-zones. Such a half-zone is formed by melting one end of a vertically held sodium nitrate crystal rod in contact with a hot surface at the top. Thermocapillary convection occurs in the melt because of the temperature gradient at the free surface of the melt. In the experiments, when thermocapillary oscillations occurred, the bottom end of the crystal rod was vibrated at a high frequency to generate a streaming flow in a direction opposite to that of the thermocapillary convection. It is observed that, by generating a sufficiently strong streaming flow, the thermocapillary flow can be offset enough such that the associated thermocapillary oscillations can be quenched.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-18
    Description: Selected problems in biocrystal mechanics(1), nucleation(2) and growth(3) will be addressed. (1) Elastic moduli of protein crystals found from triple bonding, rod vibrations, ultrasound speed and Brillion light scattering vary in a wide range of 0.3 - 3 GPa. This diversity comes from behaviour of intracrystalline liquid. Namely, liquid flow through the narrow intermolecular channels between compressed and expanded regions within an inhomogeneously deformed crystal was considered. The deformation comes from bending or ultrasound wave propagation. (2) Wide scattering in the number of crystals nucleated in the batch technique may come from liquid flow turbulence associated with pipetting; the Reynolds number these injections reaches 10(exp 3). (3) Poor reproducibility in crystal size and, probably, perfection is supposed to come from a variety of growth conditions in the same batch. Growth in a kinetic growth mode in laminar flow, e.g., in a microfluidic device, would allow to better understand growth kinetics and defect formation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: International Conference on the Crystallization of Biological Macromolecules 10; Jun 05, 2004 - Jun 09, 2004; Beijing; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-18
    Description: High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel Benchmarks (NPB). In this paper, we present some interesting performance results of ow OpenMP parallel implementation on different architectures such as the SGI Origin2000, SGI Altix, and Cray MTA-2.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: International Conference on Spectral and High Order Methods; Jun 21, 2004 - Jun 25, 2004; RI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-18
    Description: The Composite Inbred Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer on the Cassini orbiter that measures thermal radiation over two decades in wave number, from 10 to 1400 cm (1 mm to 7pm), with a spectral resolution that can be set from 0.5 to 20 cm. The far in portion of the spectrum (10 - 600 cm) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view. The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600 - 1100cm, 1100-1400 cm). Each focal plane is composed of a 1x10 array of HgCdTe detectors, each detector having a 0.3-mrad field of view. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS ability to observe atmospheres in the limb viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn's icy satellites. It will similarly map Saturn's rings, characterizing their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The effect of periodic perturbation on jet in cross-flow (JICF) is reviewed. In the first part of the paper, flow visualization result from several past works are discussed. Beginning with description of the characteristic vortex systems of a JICF it is shown that specific perturbation techniques work by organizing and intensifying specific vortex systems. Oscillatory blowing works primarily through an organization of the shear layer vortices. In the second part of the paper, results of an ongoing experiment involving another mechanical perturbation technique are discussed. It involves two tabs at the orifice exit whose asymmetry in placement is reversed periodically. It directly modulates the counter-rotating vortex pair (CVP). Effects of the perturbation for an array of three adjacent orifices are exploded. The flowfield data show an improvement in mixing compared to the unperturbed case.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: HT-FED2004-56822 , ASME Fluids Engineering Summer Meeting; Jul 11, 2004 - Jul 15, 2004; Charlotte, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: We report research experience in applying an Unsteady Reynolds-Averaged Navier-Stokes (URANS) solver for the prediction of time-dependent flows in the presence of an active flow control device. The configuration under consideration is a synthetic jet created by a single diaphragm piezoelectric actuator in quiescent air. Time-averaged and instantaneous data for this case were obtained at Langley Research Center, using multiple measurement techniques. Computational results for this case using one-equation Spalart-Allmaras and two-equation Menter s turbulence models are presented here along with comparisons with the experimental data. The effect of grid refinement, preconditioning and time-step variation are also examined.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-4967 , 22nd AIAA Applied Aerodynamics Conference and Exhibit; Aug 16, 2004 - Aug 19, 2004; Providence, RI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: The Multipurpose Hydrogen Test Bed (MHTB) Test Readiness Review (TRR), in preparation for upcoming thermodynamic vent system testing with LN2 (an LO2 simulant), was conducted on Aug 10 with no significant concerns or open action items. The 21 day test series, designed to evaluate the spray bar mixer/vent system concept suitability for zero-g operation began on August 19. The testing is progressing very well and results indicate that the Moog latching valve is more effective than the Castor solenoid valve in reducing pressure during the vent/mixing cycles. Testing with self-pressurization is expected to be completed on September 3 and testing with helium pressurization will be initiated on September 4 or 5. Additional activities during first half of August included coordination of Notification of Intent (NOI) to propose letters involving CFM in response to the HR&T BAA for Extramural Proposals.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: A computational fluid dynamic (CFD) study is performed on the Hyper-X (X-43A) Launch Vehicle stack configuration in support of the aerodynamic database generation in the transonic to hypersonic flow regime. The main aim of the study is the evaluation of a CFD method that can be used to support aerodynamic database development for similar future configurations. The CFD method uses the NASA Langley Research Center developed TetrUSS software, which is based on tetrahedral, unstructured grids. The Navier-Stokes computational method is first evaluated against a set of wind tunnel test data to gain confidence in the code s application to hypersonic Mach number flows. The evaluation includes comparison of the longitudinal stability derivatives on the complete stack configuration (which includes the X-43A/Hyper-X Research Vehicle, the launch vehicle and an adapter connecting the two), detailed surface pressure distributions at selected locations on the stack body and component (rudder, elevons) forces and moments. The CFD method is further used to predict the stack aerodynamic performance at flow conditions where no experimental data is available as well as for component loads for mechanical design and aero-elastic analyses. An excellent match between the computed and the test data over a range of flow conditions provides a computational tool that may be used for future similar hypersonic configurations with confidence.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-5385 , 22nd AIAA Applied Aerodynamics Conference and Exhibit; Aug 16, 2004 - Aug 19, 2004; Providence, RI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: An overview of Reynolds number, compressibility, and leading edge bluntness effects is presented for a 65 degree delta wing. The results of this study address both attached and vortex-flow aerodynamics and are based upon a unique data set obtained in the NASA-Langley National Transonic Facility (NTF) for i) Reynolds numbers ranging from conventional wind-tunnel to flight values, ii) Mach numbers ranging from subsonic to transonic speeds, and iii) leading-edge bluntness values that span practical slender wing applications. The data were obtained so as to isolate the subject effects and they present many challenges for Computational Fluid Dynamics (CFD) studies.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 24th International Congress of the Aeronautical Sciences; Jan 01, 2004; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: The NASA USM3D unstructured flow solver is undergoing extensions to address dynamic flow problems in support of NASA and NAVAIR efforts to study the applicability of Computational Fluid Dynamics tools for the prediction of aircraft stability and control characteristics. The initial extensions reported herein include two second-order time stepping schemes, Detached-Eddy Simulation, and grid motion. This paper reports the initial code verification and validation assessment of the dynamic flow capabilities of USM3D. The cases considered are the classic inviscid shock-tube problem, low Reynolds number wake shedding from a NACA 0012 airfoil, high Reynolds number DES-based wake shedding from a 4-to-1 length-to-diameter cylinder, and forced pitch oscillation of a NACA 0012 airfoil with inviscid and turbulent flow.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-5201 , 22nd AIAA Applied Aerodynamics Conference and Exhibit; Aug 16, 2004 - Aug 19, 2004; Providence, RI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: The 3-D supersonic viscous flow in an experimental MHD channel has been numerically simulated. The experimental MHD channel is currently in operation at NASA Ames Research Center. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed using a new 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime. The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very e5uent manner. To account for upstream (elliptic) effects, the flowfield can be computed using multiple streamwise sweeps with an iterated PNS algorithm. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the flow. The computed results are in good agreement with the available experimental data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-0317 , 42nd AIAA Aerospace Sciences Meeting and Exhibit; Jan 05, 2004 - Jan 08, 2004; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2005-0000 , 43rd AIAA Aerospace Sciences Meeting and Exhibit; Jan 10, 2005 - Jan 13, 2005; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: A collection of computational fluid dynamics tools and techniques are being developed and tested for application to stage separation and abort simulation for next-generation launch vehicles. In this work, an overset grid Navier-Stokes flow solver has been enhanced and demonstrated on a matrix of proximity cases and on a dynamic separation simulation of a belly-to-belly wing-body configuration. Steady cases show excellent agreement between Navier-Stokes results, Cartesian grid Euler solutions, and wind tunnel data at Mach 3. Good agreement has been obtained between Navier-Stokes, Euler, and wind tunnel results at Mach 6. An analysis of a dynamic separation at Mach 3 demonstrates that unsteady aerodynamic effects are not important for this scenario. Results provide an illustration of the relative applicability of Euler and Navier-Stokes methods to these types of problems.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-4838 , 22nd AIAA Applied Aerodynamics Conference; Aug 16, 2004 - Aug 19, 2004; Providence, RI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: Results of numerical simulations of Mach 10 air flow over a hollow cylinder-flare and a double-cone are presented where viscous effects are significant. The flow phenomena include shock-shock and shock- boundary-layer interactions with accompanying flow separation, recirculation, and reattachment. The purpose of this study is to promote an understanding of the fundamental gas dynamics resulting from such complex interactions and to clarify the requirements for meaningful simulations of such flows when using the direct simulation Monte Carlo (DSMC) method. Particular emphasis is placed on the sensitivity of computed results to grid resolution. Comparisons of the DSMC results for the hollow cylinder-flare (30 deg.) configuration are made with the results of experimental measurements conducted in the ONERA RSCh wind tunnel for heating, pressure, and the extent of separation. Agreement between computations and measurements for various quantities is good except that for pressure. For the same flow conditions, the double- cone geometry (25 deg.- 65 deg.) produces much stronger interactions, and these interactions are investigated numerically using both DSMC and Navier-Stokes codes. For the double-cone computations, a two orders of magnitude variation in free-stream density (with Reynolds numbers from 247 to 24,7 19) is investigated using both computational methods. For this range of flow conditions, the computational results are in qualitative agreement for the extent of separation with the DSMC method always predicting a smaller separation region. Results from the Navier-Stokes calculations suggest that the flow for the highest density double-cone case may be unsteady; however, the DSMC solution does not show evidence of unsteadiness.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 98-2668 , 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference; Jun 15, 1998 - Jun 18, 1998; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: A detailed experimental, theoretical, and computational study of separated nozzle flows has been conducted. Experimental testing was performed at the NASA Langley 16-Foot Transonic Tunnel Complex. As part of a comprehensive static performance investigation, force, moment, and pressure measurements were made and schlieren flow visualization was obtained for a sub-scale, non-axisymmetric, two-dimensional, convergent- divergent nozzle. In addition, two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and algebraic Reynolds stress modeling. For reference, experimental and computational results were compared with theoretical predictions based on one-dimensional gas dynamics and an approximate integral momentum boundary layer method. Experimental results from this study indicate that off-design overexpanded nozzle flow was dominated by shock induced boundary layer separation, which was divided into two distinct flow regimes; three- dimensional separation with partial reattachment, and fully detached two-dimensional separation. The test nozzle was observed to go through a marked transition in passing from one regime to the other. In all cases, separation provided a significant increase in static thrust efficiency compared to the ideal prediction. Results indicate that with controlled separation, the entire overexpanded range of nozzle performance would be within 10% of the peak thrust efficiency. By offering savings in weight and complexity over a conventional mechanical exhaust system, this may allow a fixed geometry nozzle to cover an entire flight envelope. The computational simulation was in excellent agreement with experimental data over most of the test range, and did a good job of modeling internal flow and thrust performance. An exception occurred at low nozzle pressure ratios, where the two-dimensional computational model was inconsistent with the three-dimensional separation observed in the experiment. In general, the computation captured the physics of the shock boundary layer interaction and shock induced boundary layer separation in the nozzle, though there were some differences in shock structure compared to experiment. Though minor, these differences could be important for studies involving flow control or thrust vectoring of separated nozzles. Combined with other observations, this indicates that more detailed, three-dimensional computational modeling needs to be conducted to more realistically simulate shock-separated nozzle flows.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 98-3107 , 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 13, 1998 - Jul 15, 1998; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: Simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss, numbers extending from single-phase flow conditions through the critical head break down point are discussed. The flow characteristics and performance of a subscale geometry designed for water testing are compared with the fullscale configuration that employs LOX. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified. The simulations have been performed using the CRUNCH CFD[R] code that has a generalized multi-element unstructured framework suitable for turbomachinery applications. An advanced multi-phase formulation for cryogenic fluids that models temperature depression and real fluid property variations is employed. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils; excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-4023 , 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 11, 2004 - Jul 14, 2004; Fort Lauderdale, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: A variety of different types of actuators have been previously investigated as flow control devices. Potential applications include the control of boundary layer separation in external flows, as well as jet engine inlet and diffuser flow control. The operating principles for such devices are typically based on either mechanical deflection of control surfaces (which include MEMS flap devices), mass injection (which includes combustion driven jet actuators), or through the use of synthetic jets (diaphragm devices which produce a pulsating jet with no net mass flow). This paper introduces some of the initial flow visualization work related to the development of a relatively new type of combustion-driven jet actuator that has been proposed based on a pulse detonation principle. The device is designed to utilize localized detonation of a premixed fuel (Hydrogen)-air mixture to periodically inject a jet of gas transversely into the primary flow. Initial testing with airflow successfully demonstrated resonant conditions within the range of acoustic frequencies expected for the design. Schlieren visualization of the pulsating air jet structure revealed axially symmetric vortex flow, along with the formation of shocks. Flow visualization of the first successful sustained oscillation condition is also demonstrated for one configuration of the current test section. Future testing will explore in more detail the onset of resonant combustion and the approach to conditions of sustained resonant detonation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 2004-11ISV-BTB , 11th International Symposium on Flow Visualization; Aug 09, 2004 - Aug 12, 2004; Notre Dame, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: The objectives of this study are to conduct a unified computational analysis for computing the design parameters such as axial thrust, convective and radiative wall heat fluxes for liquid rocket engine nozzles, so as to develop a computational strategy for computing those design parameters through parametric investigations. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, radiating, unstructured-grid, and pressure-based formulation, with grid refinement capabilities. Systematic parametric studies on effects of wail boundary conditions, combustion chemistry, radiation coupling, computational cell shape, and grid refinement were performed and assessed. Comparisons of the computed axial thrust performance, flow features, and wail heat fluxes with those of available test data and design calculations are presented.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-4016 , 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 11, 2004 - Jul 14, 2004; Fort Lauderdale, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-3680 , 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 11, 2004 - Jul 14, 2004; Fort Lauderdale, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: Three-dimensional numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, and pressure-based computational fluid dynamics formulation, and a simulated inlet condition based on a system calculation. Finite-rate chemistry was used throughout the study so that combustion effect is always included, and the effect of wall cooling on side load physics is studied. The side load physics captured include the afterburning wave, transition from free- shock to restricted-shock separation, and lip Lambda shock oscillation. With the adiabatic nozzle, free-shock separation reappears after the transition from free-shock separation to restricted-shock separation, and the subsequent flow pattern of the simultaneous free-shock and restricted-shock separations creates a very asymmetric Mach disk flow. With the cooled nozzle, the more symmetric restricted-shock separation persisted throughout the start-up transient after the transition, leading to an overall lower side load than that of the adiabatic nozzle. The tepee structures corresponding to the maximum side load were addressed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 11, 2004 - Jul 14, 2004; Fort Lauderdale, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: Pulsed sources of hyper-thermal O-atoms are now being extensively used to simulate low-earth orbit (LEO) surface exposure environments. The peak flux of these sources is many orders of magnitude larger than the corresponding LEO flux. Although it is desirable to accelerate the test by using higher fluxes than found in LEO, even commonly used fluxes are large enough to produce multi-collision effects by causing a build-up of gas at the sample surface. In this paper we characterize the physical consequences to the experiment using the direct simulation Monte Carlo (DSMC) method, DSMC allows us to extract the distributions of energy and impact angle for the O-atoms that reach the surface, and to record how strongly the gas build-up at the target assembly deflects flux from downstream instrumentation. By considering a range of source fluxes, we determine the onset conditions and severity of these multi-collision effects. We find that even at common experimental fluxes with a normally incident beam string a flat surface sample, the energy distribution of incident O-atoms broadens and develops a significant low-energy tail. The angular distributions also broaden significantly. The number of O-atoms that reach downstream instrumentation is decreased by approximately 50%. These simulations will aid in the calibration of ground-based O-atom measurements,a nd provide a model for the energy and angular distributions of O-atoms that actually impinge on surface samples.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-2685 , 37th AIAA Thermophysics Conference; Jun 28, 2004 - Jul 01, 2004; Portland, OR; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: Following failure of the carbon dioxide removal assembly (CDRA) on the ISS, a CDRA teardown, test, and evaluation (TT&E) effort found that the sorbent material was not retained as intended by the packed beds and that presence of the sorbent in the check valve and selector valve was the cause of the failure of these components. This paper documents the development of design data for an in-line filter element. The purpose of the in-line filter is to provide temporary protection for on-orbit CDRA hardware until the bed retainment system can be redesigned and replaced.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: SAE-04ICES-75 , 34th International Conference on Environmental Systems; Jul 19, 2004 - Jul 22, 2004; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: CFD tools are an integral part of industrial and research processes, for which the amount of data is increasing at a high rate. These data are used in a multi-disciplinary fluid dynamics environment, including structural, thermal, chemical or even electrical topics. We show that the data specification is an important challenge that must be tackled to achieve an efficient workflow for use in this environment. We compare the process with other software techniques, such as network or database type, where past experiences showed how difficult it was to bridge the gap between completely general specifications and dedicated specific applications. We show two aspects of the use of CFD General Notation System (CGNS) that impact CFD workflow: as a data specification framework and as a data storage means. Then, we give examples of projects involving CFD workflows where the use of the CGNS standard leads to a useful method either for data specification, exchange, or storage.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-2142 , 34th AIAA Fluid Dynamics Conference and Exhibit; Jun 28, 2004 - Jul 01, 2004; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: NASA has recently developed a new piezoelectric actuator, the Radial Field Diaphragm or RFD. This actuator uses a radially-directed electric field to generate concentric out-of-plane (Z-axis) motion that allows this packaged device to be used as a pump or valve diaphragm. In order to efficiently use this new active device, experimental determination of pressure, flow rate, mechanical work, power consumption and overall efficiency needs to be determined by actually building a pump. However, without an optimized pump design, it is difficult to assess the quality of the data, as these results are inherent to the actual pump. Hence, separate experiments must be conducted in order to generate independent results to help guide the design criteria and pump quality. This paper focuses on the experiments used to generate the RFD's operational parameters and then compares these results to the experimentally determined results of several types of ball pumps. Also discussed are how errors are inherently introduced into the experiments, the pump design, experimental hardware and their effects on the overall system efficiency.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Actuator 2004: 9th International Conference on New Actuators; Jun 14, 2004 - Jun 16, 2004; Breman; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: This investigation evaluates the numerical prediction of flow distortion and pressure recovery for a boundary layer ingesting offset inlet with active flow control devices. The numerical simulations are computed using a Reynolds averaged Navier-Stokes code developed at NASA. The numerical results are validated by comparison to experimental wind tunnel tests conducted at NASA Langley Research Center at both low and high Mach numbers. Baseline comparisons showed good agreement between numerical and experimental results. Numerical simulations for the inlet with passive and active flow control also showed good agreement at low Mach numbers where experimental data has already been acquired. Numerical simulations of the inlet at high Mach numbers with flow control jets showed an improvement of the flow distortion. Studies on the location of the jet actuators, for the high Mach number case, were conducted to provide guidance for the design of a future experimental wind tunnel test.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-2318 , 2nd AIAA Flow Control Conference; Jun 28, 2004 - Jul 01, 2004; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: Low speed flow separation over a wall-mounted hump, and its control using steady suction, were studied experimentally in order to generate a data set for a workshop aimed at validating CFD turbulence models. The baseline and controlled data sets comprised static and dynamic surface pressure measurements, flow field measurements using Particle Image Velocimetry (PIV) and wall shear stress obtained via oil-film interferometry. In addition to the specific test cases studied, surface pressures for a wide variety of conditions were reported for different Reynolds numbers and suction rates. Stereoscopic PIV and oil-film flow visualization indicated that the baseline separated flow field was mainly two- dimensional. With the application of control, some three-dimensionality was evident in the spanwise variation of pressure recovery, reattachment location and spanwise pressure fluctuations. Part 2 of this paper, under preparation for the AIAA Meeting in Reno 2005, considers separation control by means of zero-efflux oscillatory blowing.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-2220-Pt-1 , 2nd AIAA Flow Control Conference; Jun 28, 2004 - Jul 01, 2004; Portland, OR; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: The thrust capability of turbojet cycles is reduced at high flight Mach number (3+) by the increase in inlet stagnation temperature. The 'hot section' temperature limit imposed by materials technology sets the maximum heat addition and, hence, sets the maximum flight Mach number of the operating envelope. Compressor pre-cooling, either via a heat exchanger or mass-injection, has been suggested as a means to reduce compressor inlet temperature and increase mass flow capability, thereby increasing thrust. To date, however, no research has looked at compressor cooling (i.e., using a compressor both to perform work on the gas path air and extract heat from it simultaneously). We wish to assess the feasibility of this novel concept for use in low-to-high Mach number flight. The results to-date show that an axial compressor with cooling: (1) relieves choking in rear stages (hence opening up operability), (2) yields higher-pressure ratio and (3) yields higher efficiency for a given corrected speed and mass flow. The performance benefit is driven: (i) at the blade passage level, by a decrease in the total pressure reduction coefficient and an increase in the flow turning; and (ii) by the reduction in temperature that results in less work required for a given pressure ratio. The latter is a thermodynamic effect. As an example, calculations were performed for an eight-stage compressor with an adiabatic design pressure ratio of 5. By defining non-dimensional cooling as the percentage of compressor inlet stagnation enthalpy removed by a heat sink, the model shows that a non-dimensional cooling of percent in each blade row of the first two stages can increase the compressor pressure ratio by as much as 10-20 percent. Maximum corrected mass flow at a given corrected speed may increase by as much as 5 percent. In addition, efficiency may increase by as much as 5 points. A framework for characterizing and generating the performance map for a cooled compressor has been developed. The approach is based upon CFD computations and mean line analysis. Figures of merit that characterize the bulk performance of blade passage flows with and without cooling are extracted from CFD solutions. Such performance characterization is then applied to a preliminary compressor design framework (mean line). The generic nature of this approach makes it suitable for assessing the effect of different types of compressor cooling schemes, such as heat exchange or evaporative cooling (mass injection). Future work will focus on answering system level questions regarding the feasibility of compressor cooling. Specifically, we wish to determine the operational parametric space in which compressor cooling would be advantageous over other high flight Mach number propulsion concepts. In addition, we will explore the design requirements of cooled compressor turbomachinery, as well as the flow phenomena that limit and control its operation, and the technology barriers that must be crossed for its implementation.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: A simplified mathematical model, based on body-fitted coordinates, is formulated to study the evolution of non-swirling and swirling liquid sheet emanated from an annular nozzle in a quiescent surrounding medium. The model provides predictions of sheet trajectory, thickness and velocity at various liquid mass flow rates and liquid-swirler angles. It is found that a non-swirling annular sheet converges toward its centerline and assumes a bell shape as it moves downstream from the nozzle. The bell radius, and length are more pronounced at higher liquid mass flow rates. The thickness of the non-swirling annular sheet increases while its stream-wise velocity decreases with an increase in mass flow rate. The introduction of swirl results in the formation of a diverging hollow-cone sheet. The hollow-cone divergence from its centerline is enhanced by an increase in liquid mass flow rate or liquid-swirler angle. The hollow- cone sheet its radius, curvature and stream-wise velocity increase while its thickness and tangential velocity decrease as a result of increasing the mass flow rate or liquid-swirler angle. The present results are compared with previous studies and conclusions are drawn.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 52nd JANNAF Joint Propulsion Meeting; May 10, 2004 - May 13, 2004; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: The SPHC hydrodynamic code was used to simulate impacts of spherical aluminum projectiles on a single-wall aluminum plate and on a generic Whipple shield. Simulations were carried out in two and three dimensions. Projectile speeds ranged from 2 kilometers per second to 10 kilometers per second for the single-wall runs, and from 3 kilometers per second to 40 kilometers per second for the Whipple shield runs. Spallation limit results of the single-wall simulations are compared with predictions from five standard penetration equations, and are shown to fall comfortably within the envelope of these analytical relations. Ballistic limit results of the Whipple shield simulations are compared with results from the AUTODYN-2D and PAM-SHOCK-3D codes presented in a paper at the Hypervelocity Impact Symposium 2000 and the Christiansen formulation of 2003.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 45th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference; Apr 19, 2004 - Apr 24, 2004; Palm Springs, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: Impinging jets have been used for a wide variety of applications where high rates of heat transfer are desired. This report will present a review of heat transfer correlations that have been published. The correlations were then added to the LEWICE software to evaluate the applicability of these correlations to a piccolo tube anti-icing system. The results of this analysis were then compared quantitatively to test results on a representative piccolo tube system.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2004-212917 , AIAA Paper 2004-0062 , E-14355 , 42nd Aerospace Sciences Meeting and Exhibit; Jan 05, 2004 - Jan 08, 2004; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: The effects of supercooled large droplets (SLD) in icing have been an area of much interest in recent years. As part of this effort, the assumptions used for ice accretion software have been reviewed. A literature search was performed to determine advances from other areas of research that could be readily incorporated. Experimental data in the SLD regime was also analyzed. A semi-empirical computational model is presented which incorporates first order physical effects of large droplet phenomena into icing software. This model has been added to the LEWICE software. Comparisons are then made to SLD experimental data that has been collected to date. Results will be presented for the comparison of water collection efficiency, ice shape and ice mass.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2004-212916 , AIAA Paper 2004-0412 , E-14352 , 42nd Aerospace Sciences Meeting and Exhibit; Jan 05, 2004 - Jan 08, 2004; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: High temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, and Stirling cycle heat sources; with the resurgence of space nuclear power, additional applications include reactor heat removal elements and radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly long-term materials compatibility is being evaluated through the use of high temperature life test heat pipes. Thermacore International, Inc., has carried out several sodium heat pipe life tests to establish long term operating reliability. Four sodium heat pipes have recently demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A 3l6L stainless steel heat pipe with a sintered porous nickel wick structure and an integral brazed cartridge heater has successfully operated at 650 to 700 C for over 115,000 hours without signs of failure. A second 3l6L stainless steel heat pipe with a specially-designed Inconel 60 I rupture disk and a sintered nickel powder wick has demonstrated over 83,000 hours at 600 to 650 C with similar success. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 41 ,000 hours at nearly 700 0c. A hybrid (i.e. gas-fired and solar) heat pipe with a Haynes 230 envelope and a sintered porous nickel wick structure was operated for about 20,000 hours at nearly 700 C without signs of degradation. These life test results collectively have demonstrated the potential for high temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability, Detailed design specifications, operating hi story, and test results are described for each of these sodium heat pipes. Lessons learned and future life test plans are also discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2004-212959 , E-14407 , Space Technology and Applications International Forum (STAIF-2004); Feb 08, 2004 - Feb 12, 2004; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: A model of the wind flow conditions around Kennedy Space Center (KSC) Vehicle Assembly Building (VA B) is presented. An incompressible Navier-Stokes flow solver was used to compute the flow field around fixed Launch Complex 39 (LC-39) buildings and structures. The 3-D flow field. including velocity magnitude and velocity vectors, was established to simulate the localized wind speeds and directions at specified locations in and around LC-39 buildings and structures. The results of this study not only help explain the physical phenomena of the flow patterns around LC-39 buildings but also are useful to the Shuttle personnel. Current Operations and Maintenance Requirements and Specifications (OMRS) for vehicle transfer operations are based on empirically derived historical data, and no detailed mathematical analysis of wind conditions around LC-39 structures has ever been accomplished.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: KSC-2004-064 , Heat Transfer/Fluids Engineering Summer Conference; Jul 11, 2004 - Jul 15, 2004; Charlotte, NC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: Measurement of time-averaged velocity, density, temperature, and turbulence in gas flows using a nonintrusive, point-wise measurement technique based on molecular Rayleigh scattering is discussed. Subsonic and supersonic flows in a 25.4-mm diameter free jet facility were studied. The developed instrumentation utilizes a Fabry-Perot interferometer to spectrally resolve molecularly scattered light from a laser beam passed through a gas flow. The spectrum of the scattered light contains information about velocity, density, and temperature of the gas. The technique uses a slow scan, low noise 16-bit depth CCD camera to record images of the fringes formed by Rayleigh scattered light passing through the interferometer. A kinetic theory model of the Rayleigh scattered light is used in a nonlinear least squares fitting routine to estimate the unknown parameters from the fringe images. The ability to extract turbulence information from the fringe image data proved to be a challenge since the fringe is broadened by not only turbulence, but also thermal fluctuations and aperture effects from collecting light over a range of scattering angles. Figure 1 illustrates broadening of a Rayleigh spectrum typical of flow conditions observed in this work due to aperture effects and turbulence for a scattering angle, chi(sub s), of 90 degrees, f/3.67 collection optics, mean flow velocity, u(sub k), of 300 m/s, and turbulent velocity fluctuations, sigma (sub uk), of 55 m/s. The greatest difficulty in processing the image data was decoupling the thermal and turbulence broadening in the spectrum. To aid in this endeavor, it was necessary to seed the ambient air with smoke and dust particulates; taking advantage of the turbulence broadening in the Mie scattering component of the spectrum of the collected light (not shown in the figure). The primary jet flow was not seeded due to the difficulty of the task. For measurement points lacking particles, velocity, density, and temperature information could reliably be recovered, however the turbulence estimates contained significant uncertainty. Resulting flow parameter estimates are presented for surveys of Mach 0.6, 0.95, and 1.4 jet flows. Velocity, density, and temperature were determined with accuracies of 5 m/s, 1.5%, and 1%, respectively, in flows with no particles present, and with accuracies of 5 m/s, 1-4%, and 2% in flows with particles. Comparison with hotwire data for the Mach 0.6 condition demonstrated turbulence estimates with accuracies of about 5 m/s outside the jet core where Mie scattering from dust/smoke particulates aided in the estimation of turbulence. Turbulence estimates could not be recovered with any significant accuracy for measurement points where no particles were present.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: E-18150 , 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics; Jul 12, 2004 - Jul 15, 2004; Lisbon; Portugal
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-18
    Description: Computational Fluid Dynamics (CFD) is becoming an important component of injector design in the rocket industry. Injector designers who use CFD in the design process need to understand the accuracy level of the particular code being used for certain aspects of the design. This paper presents a recent effort to acquire benchmark quality data to be used for CFD code validation. Detailed chamber wall temperature and heat flux data was acquired for a gaseous oxygen, gaseous hydrogen single element shear coaxial injector in a 1.5 inch diameter copper heat sink chamber at Penn State University. The data was taken using both coaxial and water cooled heat flux gauges. Tests were run using hot gases generated from both fuel and oxidizer preburners. Tests were conducted over a chamber pressure range of 300 to 750 psia. Data analysis and uncertainty information will also be presented.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 10, 2005 - Jul 13, 2005; Tucson, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-18
    Description: The feasibility of using carbon-carbon recuperators in closed-Brayton-cycle (CBC) nuclear space power conversion systems (PCS) was assessed. Recuperator performance expectations were forecast based on projected thermodynamic cycle state values for a planetary mission. Resulting thermal performance, mass and volume for a plate-fin carbon-carbon recuperator were estimated and quantitatively compared with values for a conventional offset-strip-fin metallic design. Material compatibility issues regarding carbon-carbon surfaces exposed to the working fluid in the CBC PCS were also discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 2nd International Energy Conversion Engineering Conference; Aug 16, 2004 - Aug 19, 2004; Providence, RI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Flow and transport in permeable or porous media and microchannels occurs in a variety of situations in micro- and reduced-gravity environments, many of them associated with environmental control and life support systems. While the role of gravity is limited, due to the typically small size scales associated permeable media, gravity, at the very least, affects the overall disposition of fluid in a macroscopic system. This presentation will discuss examples where the absence of gravity affects flow and phase distribution in selected examples of unsaturated flow and transport of heat and mass in porous media and microchannels that are pertinent to spacecraft systems.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Gordon Research Conference on Flow and Transport; Jul 11, 2004 - Jul 15, 2004; Oxford, United Kingdom; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-18
    Description: In the Tui ine Branch of the Turbomachinery and Propulsion Systems Division, researching and developing efficient turbine aerothermodynamics technologies is the main objective. Creating effective turbines for jet engines is a process which, if based purely on physical experimental testing, would be extremely expensive. It is for this reason, and also for the reasons of speed and ease, that the Turbine Branch spends a large amount of effort working with simulations of turbines. Specifically, they focus their work on two main fields: Computational Field Dynamics (CFD), and Experimental data analysis. The experimental field involves comparing experimental results to simulated results, whereas the CFD field involves running these simulations. The simulations are applied to aerodynamics and heat transfer cases, for both steady and unsteady flow conditions. By and large this work is applied to the domain of flow and heat transfer in axial turbines. The main application used to run these heat flow simulations is GlennHT. This program, recently rewritten in FORTRAN 90, allows the user to input a job file which specifies all the necessary parameters needed to simulate flow through a user-defined grid. There are several other executables used as well, ranging in application from converting grid files to and from particular formats, to merging blocks in a connectivity file, to converting connectivity files to a GlennHT compatible format. All of these executables are run from the command line in a terminal; some of them have interactive prompts where the user must specify the files to be manipulated after the program starts, while others take all of their parameters from the command line. With this amount of variation comes a good deal of commands and formats to memorize, which can cause slower and less efficient work, as users may forget how to execute a certain program, or not remember the pathnames of the files they wish to use. Two years ago, steps were made to expedite this process with a graphical user interface (GUI) that combines the functionality of all the executables along with adding some new functionality, such as residuals graphing and boundary conditions creation. Upon my beginning here at Glenn, many parts of the GUI, which was developed in Java, were nonfunctional. There were also issues with cross-platforming, as systems in the branch were transitioning from Silicon Graphics (SGI) machines to Linux machines. My goals this summer are to finish the parts of the GUI that are not yet completed, fix parts that did not work correctly, expand the functionality to include other useful features, such as grid surface highlighting, and make the system compatible with both Linux and SGI. I will also be heavily testing the system and providing sufficient documentation on how to use the GUI, as no such documentation existed previously.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-08-17
    Description: The stability of cylindrical liquid bridges in reduced gravity is affected by ambient vibrations of the spacecraft. Such vibrations are expected to excite capillary modes of the bridge. The lowest-order unstable mode is particularly susceptible to vibration as the length of the bridge approaches the stability limit. This low-order mode is known as the (2,0) mode and is an axisymmetric varicose mode of one wavelength in the axial direction. In this work, an optical system is used to detect the (2,0)-mode amplitude. The derivative of the error signal produced by this detector is used to produce the appropriate voltages on a pair of ring electrodes which are concentric with the bridge. A mode-coupled Maxwell stress profile is thus generated in proportional to the modal velocity. Depending on the sign of the gain, the damping of the capillary oscillation can be either increased or decreased. This effect has been demonstrated in Plateau-tank experiments. Increasing the damping of the capillary modes on free liquid surfaces in space could be beneficial for containerless processing and other novel technologies.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session, Volume 2; 503-508; NASA/CP-2004-213205/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-08-16
    Description: The stability of cylindrical liquid bridges in reduced gravity is affected by ambient vibrations of the spacecraft. Such vibrations are expected to excite capillary modes of the bridge. The lowest-order unstable mode is particularly susceptible to vibration as the length of the bridge approaches the stability limit. This low-order mode is known as the (2,0) mode and is an axisymmetric varicose mode of one wavelength in the axial direction. In this work, an optical system is used to detect the (2,0)-mode amplitude. The derivative of the error signal produced by this detector is used to produce the appropriate voltages on a pair of ring electrodes which are concentric with the bridge. A mode-coupled Maxwell stress profile is thus generated in proportional to the modal velocity. Depending on the sign of the gain, the damping of the capillary oscillation can be either increased or decreased. This effect has been demonstrated in Plateau-tank experiments. Increasing the damping of the capillary modes on free liquid surfaces in space could be beneficial for containerless processing and other novel technologies. [work supported by NASA]
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference; 185; NASA/TM-2004-213114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-08-16
    Description: Spray cooling has high potential in thermal management and life support systems by overcoming the deleterious effect of microgravity upon two-phase heat transfer. In particular spray cooling offers several advantages in heat flux removal that include the following: 1. By maintaining a wetted surface, spray droplets impinge upon a thin fluid film rather than a dry solid surface 2. Most heat transfer surfaces will not be smooth but rough. Roughness can enhance conductive cooling, aid liquid removal by flow channeling. 3. Spray momentum can be used to a) substitute for gravity delivering fluid to the surface, b) prevent local dryout and potential thermal runaway and c) facilitate liquid and vapor removal. Yet high momentum results in high We and Re numbers characterizing the individual spray droplets. Beyond an impingement threshold, droplets splash rather than spread. Heat flux declines and spray cooling efficiency can markedly decrease. Accordingly we are investigating droplet impingement upon a) dry solid surfaces, b) fluid films, c) rough surfaces and determining splashing thresholds and relationships for both dry surfaces and those covered by fluid films. We are presently developing engineering correlations delineating the boundary between splashing and non-splashing regions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference; 179-180; NASA/TM-2004-213114
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Velvetlike and brushlike pads of carbon fibers have been proposed for use as mechanically compliant, highly thermally conductive interfaces for transferring heat. A pad of this type would be formed by attaching short carbon fibers to either or both of two objects that one desires to place in thermal contact with each other. The purpose of using a thermal-contact pad of this or any other type is to reduce the thermal resistance of an interface between a heat source and a heat sink.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: MSC-23018 , NASA Tech Briefs, December 2004; 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-12
    Description: This report describes a study of databases produced by direct numerical simulation of mixing layers developing between opposing flows of two fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence, with emphasis on helicity. The simulations were performed for two different fluid pairs -- O2/H2 and C7H16/N2 -- at similar values of reduced pressure.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NPO-30894 , NASA Tech Briefs, December 2004; 27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-12
    Description: Flexible heat pipes of an improved type are fabricated as layers of different materials laminated together into vacuum- tight sheets or tapes. In comparison with prior flexible heat pipes, these flexible heat pipes are less susceptible to leakage. Other advantages of these flexible heat pipes, relative to prior flexible heat pipes, include high reliability and greater ease and lower cost of fabrication. Because these heat pipes are very thin, they are highly flexible. When coated on outside surfaces with adhesives, these flexible heat pipes can be applied, like common adhesive tapes, to the surfaces of heat sinks and objects to be cooled, even if those surfaces are curved.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: MSC-23400 , NASA Tech Briefs, February 2004; 27-28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-10
    Description: The main objective of this article is to introduce and to show the implementation of a novel two-stage procedure to efficiently estimate the level of scale resolution possible for a given flow on a given grid for Partial Averaged Navier-Stokes (PANS) and other hybrid models. It has been found that the prescribed scale resolution can play a major role in obtaining accurate flow solutions. The first step is to solve the unsteady or steady Reynolds Averaged Navier-Stokes (URANS/RANS) equations. From this preprocessing step, the turbulence length-scale field is obtained. This is then used to compute the characteristic length-scale ratio between the turbulence scale and the grid spacing. Based on this ratio, we can assess the finest scale resolution that a given grid for a given flow can support. Along with other additional criteria, we are able to analytically identify the appropriate hybrid solver resolution for different regions of the flow. This procedure removes the grid dependency issue that affects the results produced by different hybrid procedures in solving unsteady flows. The formulation, implementation methodology, and validation example are presented. We implemented this capability in a production Computational Fluid Dynamics (CFD) code, PAB3D, for the simulation of unsteady flows.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2004-213260 , L-19046
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-10
    Description: A ceramic guide vane has been designed and tested for operation under high temperature. Previous efforts have suggested that some cooling flow may be required to alleviate the high temperatures observed near the trailing edge region. The present report describes briefly a three-dimensional viscous analysis carried out to calculate the temperature and pressure distribution on the blade surface and in the flow path with a jet of cooling air exiting from the suction surface near the trailing edge region. The data for analysis was obtained from Dr. Craig Robinson. The surface temperature and pressure distribution along with a flowfield distribution is shown in the results. The surface distribution is also given in a tabular form at the end of the document.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-10
    Description: The objectives of the program were to develop computational fluid dynamics (CFD) codes and simpler industrial codes for analyzing and designing advanced seals for air-breathing and space propulsion engines. The CFD code SCISEAL is capable of producing full three-dimensional flow field information for a variety of cylindrical configurations. An implicit multidomain capability allow the division of complex flow domains to allow optimum use of computational cells. SCISEAL also has the unique capability to produce cross-coupled stiffness and damping coefficients for rotordynamic computations. The industrial codes consist of a series of separate stand-alone modules designed for expeditious parametric analyses and optimization of a wide variety of cylindrical and face seals. Coupled through a Knowledge-Based System (KBS) that provides a user-friendly Graphical User Interface (GUI), the industrial codes are PC based using an OS/2 operating system. These codes were designed to treat film seals where a clearance exists between the rotating and stationary components. Leakage is inhibited by surface roughness, small but stiff clearance films, and viscous pumping devices. The codes have demonstrated to be a valuable resource for seal development of future air-breathing and space propulsion engines.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2004-213199-VOL6 , NAS 1.26:2004-213199 , E-14708-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-10
    Description: The objectives of the program were to develop computational fluid dynamics (CFD) codes and simpler industrial codes for analyzing and designing advanced seals for air-breathing and space propulsion engines. The CFD code SCISEAL is capable of producing full three-dimensional flow field information for a variety of cylindrical configurations. An implicit multidomain capability allow the division of complex flow domains to allow optimum use of computational cells. SCISEAL also has the unique capability to produce cross-coupled stiffness and damping coefficients for rotordynamic computations. The industrial codes consist of a series of separate stand-alone modules designed for expeditious parametric analyses and optimization of a wide variety of cylindrical and face seals. Coupled through a Knowledge-Based System (KBS) that provides a user-friendly Graphical User Interface (GUI), the industrial codes are PC based using an OS/2 operating system. These codes were designed to treat film seals where a clearance exists between the rotating and stationary components. Leakage is inhibited by surface roughness, small but stiff clearance films, and viscous pumping devices. The codes have demonstrated to be a valuable resource for seal development of future air-breathing and space propulsion engines.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2004-213199/VOL4 , E?14708?4/VOL4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-10
    Description: Both experimental and mechanism analysis studies about the concept of the innovative heat pipe using new working fluids have been conducted. The major study activities and results are summarized summarized.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-10
    Description: The objectives of the program were to develop computational fluid dynamics (CFD) codes and simpler industrial codes for analyzing and designing advanced seals for air-breathing and space propulsion engines. The CFD code SCISEAL is capable of producing full three-dimensional flow field information for a variety of cylindrical configurations. An implicit multidomain capability allow the division of complex flow domains to allow optimum use of computational cells. SCISEAL also has the unique capability to produce cross-coupled stiffness and damping coefficients for rotordynamic computations. The industrial codes consist of a series of separate stand-alone modules designed for expeditious parametric analyses and optimization of a wide variety of cylindrical and face seals. Coupled through a Knowledge-Based System (KBS) that provides a user-friendly Graphical User Interface (GUI), the industrial codes are PC based using an OS/2 operating system. These codes were designed to treat film seals where a clearance exists between the rotating and stationary components. Leakage is inhibited by surface roughness, small but stiff clearance films, and viscous pumping devices. The codes have demonstrated to be a valuable resource for seal development of future air-breathing and space propulsion engines.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2004-213199/VOL3 , E-14708-3/VOL3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-10
    Description: The objectives of the program were to develop computational fluid dynamics (CFD) codes and simpler industrial codes for analyzing and designing advanced seals for air-breathing and space propulsion engines. The CFD code SCISEAL is capable of producing full three-dimensional flow field information for a variety of cylindrical configurations. An implicit multidomain capability allows the division of complex flow domains to allow optimum use of computational cells. SCISEAL also has the unique capability to produce cross-coupled stiffness and damping coefficients for rotordynamic computations. The industrial codes consist of a series of separate stand-alone modules designed for expeditious parametric analyses and optimization of a wide variety of cylindrical and face seals. Coupled through a Knowledge-Based System (KBS) that provides a user-friendly Graphical User Interface (GUI), the industrial codes are PC based using an OS/2 operating system. These codes were designed to treat film seals where a clearance exists between the rotating and stationary components. Leakage is inhibited by surface roughness, small but stiff clearance films, and viscous pumping devices. The codes have demonstrated to be a valuable resource for seal development of future air-breathing and space propulsion engines.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2004-213199/VOL1 , E-14708/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-10
    Description: The objectives of the program were to develop computational fluid dynamics (CFD) codes and simpler industrial codes for analyzing and designing advanced seals for air-breathing and space propulsion engines. The CFD code SCISEAL is capable of producing full three-dimensional flow field information for a variety of cylindrical configurations. An implicit multidomain capability allow the division of complex flow domains to allow optimum use of computational cells. SCISEAL also has the unique capability to produce cross-coupled stiffness and damping coefficients for rotordynamic computations. The industrial codes consist of a series of separate stand-alone modules designed for expeditious parametric analyses and optimization of a wide variety of cylindrical and face seals. Coupled through a Knowledge-Based System (KBS) that provides a user-friendly Graphical User Interface (GUI), the industrial codes are PC based using an OS/2 operating system. These codes were designed to treat film seals where a clearance exists between the rotating and stationary components. Leakage is inhibited by surface roughness, small but stiff clearance films, and viscous pumping devices. The codes have demonstrated to be a valuable resource for seal development of future air-breathing and space propulsion engines.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2004-213199/VOL2 , E-14708-2/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...