ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Immunocytochemistry
  • Springer  (2)
  • 2000-2004  (2)
Collection
Publisher
  • Springer  (2)
Years
Year
  • 1
    ISSN: 0219-1032
    Keywords: Calcium-binding Protein ; Immunocytochemistry ; Localization ; Visual Cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The distribution and morphology of neurons containing three calcium-binding proteins, calbindin D28K, calretinin, and parvalbumin in the adult rabbit visual cortex were studied. The calcium-binding proteins were identified using antibody immunocytochemistry. Calbindin D28K-immunoreactive (IR) neurons were located throughout the cortical layers with the highest density in layer V. However, calbindin D28K-IR neurons were rarely encountered in layer I. Calretinin-IR neurons were mainly located in layers II and III. Considerably lower densities of calretinin-IR neurons were observed in the other layers. Parvalbumin-IR neurons were predominantly located in layers III, IV, V, and VI. In layers I and II, parvalbumin-IR neurons were only rarely seen. The majority of the calbindin D28K-IR neurons were stellate, round or oval cells with multipolar dendrites. The majority of calretinin-IR neurons were vertical fusiform cells with long processes traveling perpendicularly to the pial surface. The morphology of the majority of parvalbumin-IR neurons was similar to that of calbindin D28K: stellate, round or oval with multipolar dendrites. These results indicate that these three different calcium-binding proteins are contained in specific layers and cells in the rabbit visual cortex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Arabinogalactan proteins ; Fiber ; Linum usitatissimum ; Immunocytochemistry ; Polysaccharide ; Secondary wall
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The deposition and formation of a thick secondary wall is a major event in the differentiation of flax (Linum usitatissimum) fibers. This wall is cellulose-rich; but it also contains significant amounts of other matrix polymers which are noncellulosic such as pectins. We have used immunocytochemical techniques with antibodies specific for various epitopes associated with either pectins or arabinogalactan proteins (AGPs) to investigate the distribution of these polymers within the walls of differentiating young fibers of 1- and 2-week-old plants. Our results show that different epitopes exhibit distinct distribution patterns within fiber walls. Unesterified pectins recognized by polygalacturonic acid-rhamnogalacturonan I (PGA/RG-I) antibodies and rhamnogalacturonan II recognized by anti-RG-II-borate complex antibodies are localized all over the secondary wall of fibers. PGA/RG-I epitopes, but not RG-II epitopes, are also present in the middle lamellae and cell junctions. In marked contrast, β-(1→4) galactans recognized by the LM5 monoclonal antibody and AGP epitopes recognized by anti-β-(1→6) galactan and LM2 antibodies are primarily located in the half of the secondary wall nearest the plasma membrane. LM2 epitopes, present in 1-week-old fibers, are undetectable later in development, suggesting a regulation of the expression of certain AGP epitopes. In addition, localization of cellulose with the cellobiohydrolase I-gold probe reveals distinct subdomains within the secondary walls of young fibers. These findings indicate that, in addition to cellulose, early-developing flax fibers synthesize and secrete different pectin and AGP molecules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...