ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Forschungsdaten  (4)
  • Seismological stations
  • 2005-2009  (3)
  • 1980-1984  (1)
Sammlung
  • Forschungsdaten  (4)
Datenquelle
Schlagwörter
Erscheinungszeitraum
Jahr
  • 1
    facet.materialart.
    Unbekannt
    Integrated Plate boundary Observatory Chile - IPOC
    Publikationsdatum: 2023-02-08
    Beschreibung: Abstract
    Beschreibung: The IPOC seismic network is part of the Integrated Plate boundary Observatory Chile (IPOC), a European-Chilean network of institutions and scientists organizing and operating a distributed system of instruments and projects dedicated to the study of earthquakes and deformation at the continental margin of Chile. In particular, the seismic network is jointly operated by the GFZ German Research Centre for Geosciences, Potsdam, Germany; the Institut de Physique du Globe Paris, France (IPGP); the Chilean National Seismological Centre (CSN); the Universidad de Chile, Santiago, Chile (UdC); and the Universidad Católica del Norte, Antofagasta, Chile (UCNA). The subduction plate boundary between the South American and the oceanic Nazca plates exhibits some of the largest earthquakes on Earth. The IPOC goal is to improve the understanding of both the physical mechanisms underlying these processes and the natural hazards induced by them. The observatory is designed to monitor the plate boundary system from the Peru-Chile border to south of the city of Antofagasta, from the coast to the high Andes, capturing both great and small earthquakes in this region. A key component of IPOC is its multi-parameter observatories, where at each site a suite of different physical parameters are measured continuously. So far about 20 such multi-parameter stations are installed. All of these sites are equipped with STS-2 broadband seismometers and accelerometers. Additional instrumentation at some of the stations includes continuous GPS, electric and magnetic field (MT), surface inclination, and climate (temperature, air pressure, humidity). Most sites transmit their data in near-real time using a suite of communication channels (VSAT, WiFi, telemetry etc.). Seismic instruments are deployed on concrete pedestals in bedrock caverns (a few meters deep) to measure ground shaking from earthquakes or other sources that last from a tiny fraction of a second to several hours. Strong-motion sensors are deployed next to the broadband sensors to increase the dynamic range and for earthquake engineering applications. Broadband data are freely distributed in real-time and archive data is also available. This DOI encompasses all IPOC seismic data; data is available under FDSN network code CX.
    Schlagwort(e): Seismic waveforms ; Broadband seismic waveforms ; Seismic monitoring ; Plate boundary observatory ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Materialart: Dataset , Seismic Network
    Format: Approximately 20 active stations; greater than 120 MB/day.
    Format: .mseed
    Format: XML
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    GFZ Data Services
    Publikationsdatum: 2023-02-08
    Beschreibung: Abstract
    Beschreibung: The Institute of Seismology, University of Helsinki (ISUH) was founded in 1961 as a response to the growing public concern for environmental hazards caused by nuclear weapon testing. Since then ISUH has been responsible for seismic monitoring in Finland. The current mandate covers government regulator duties in seismic hazard mitigation and nuclear test ban treaty verification, observatory activities and operation of the Finnish National Seismic Network (FNSN) as well as research and teaching of seismology at the University of Helsinki.The first seismograph station of Finland was installed at the premises of the Department of Physics, University of Helsinki in 1924. However, the mechanical Mainka seismographs had low magnification and thus the recordings were of little practical value for the study of local seismicity. The first short-period seismographs were set up between 1956 and 1963. The next significant upgrade of FNSN occurred during the late 1970’s when digital tripartite arrays in southern and central Finland became fully operational, allowing for systematic use of instrumental detection, location and magnitude determination methods. By the end of the 1990’s, the entire network was operating using digital telemetric or dial-up methods. The FNSN has expanded significantly during the 21st Century. It comprises now 36 permanent stations. Most of the stations have Streckeisen STS-2, Nanometrics Trillium (Compact/P/PA/QA) or Guralp CMG-3T broad band sensors. Some Teledyne-Geotech S13/GS13 short period sensors are also in use. Data acquisition systems are a combination of Earth Data PS6-24 digitizers and PC with Seiscomp/Seedlink software or Nanometrics Centaurs. The stations are connected to the ISUH with Seedlink via Internet and provide continuous waveform data at 40 Hz (array) or 100-250 Hz sampling frequency. Further information about instrumentation can be found at the Institute’s web site (www.seismo.helsinki.fi). Waveform data are available from the GEOFON data centre, under network code HE, and arefully open.
    Schlagwort(e): geophysics ; seismology ; seismic noise ; earthquakes ; induced ; seismic hazard ; broad band ; velocity ; acceleration ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Materialart: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2023-02-08
    Beschreibung: Abstract
    Beschreibung: The Iquique Local Network (ILN), a temporal network of broadband and short period seismic stations has been operating in Northern Chile since 2009. The aim of this installation was to locally densify the permanent seismic installation of the Integrated Plate Boundary Observatory in Chile (IPOC), with the main goal to decrease the magnitude of detected earthquake, to improve the hypocentral location accuracy, to allow a more accurate investigation of seismic source parameters, and to analyse proposed seismogenic structures of the Northern Chile seismic gap. The network setup evolved with time, with different geometries at different installation phases, aiming to study different seismicity features. In the first phase, started in 2009 and operational since 2010 until autumn 2013, the network had a sparse configuration, targeting a broad region extending from 19.5° S in the North to approximately 21.3° S South of Iquique. In the following stage, operational until fall 2017, most broadband stations were rearranged into a small aperture seismic array (PicArray) close to the village of Pica, to monitor with array techniques the shallow seismicity at the plate interfacer, intermediate and deep focus seismicity. Waveform data are available from the GEOFON data centre, under network code IQ, and arefully open.
    Schlagwort(e): geophysics ; seismology ; seismic noise ; earthquakes ; seismic hazard ; broad band ; velocity ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Materialart: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2024-02-23
    Beschreibung: Abstract
    Beschreibung: The Teisseyre-Tornquist Zone (TTZ) as part of the Trans-European Suture Zone (TESZ) is one of the most prominent suture zones in Europe separating the young Palaeozoic platform from the much older Precambrian East European craton. The knowledge of deep structure of the TESZ is very important for the understanding of various tectonic processes in Europe. The PASSEQ 2006-2008 seismic experiment was performed thanks to a big international effort of 17 institutions from 10 countries. A total of 139 three-component temporary short-period and 49 temporary broadband seismic stations provided continuous recordings between May 2006 and June 2008 with the main period of recordings during 2007, in an array about 1200 km long and 400 km wide running from Germany through the Czech Republic and Poland to Lithuania. The average spacing between all stations was about 60 km, attaining about 20 km in the central part. The configuration of the seismic network was a compromise among needs of different seismic methods. The dense central profile allows the use of modern passive 2-D imaging techniques, while the distribution of broadband sensors was designed for surface wave and receiver function studies of the upper mantle down to the transition zone in a wide frequency range. Waveform data is fully open, with network code 7E.
    Schlagwort(e): Seismic waveforms, PASSEQ ; Germany ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Materialart: Dataset , Seismic Network
    Format: Approx 1684 GB
    Format: .mseed
    Format: XML
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...